Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mystery solved of source of anti-cancer effects in pregnancy hormone

24.06.2014

University of Montreal scientists have identified a small molecule found in pregnant women’s urine that apparently blocks the growth of several types of cancers, including AIDS-related Kaposi’s sarcoma, which currently has no cure. Their study results will be presented Monday at the joint meeting of the International Society of Endocrinology and The Endocrine Society: ICE/ENDO 2014 in Chicago.

These findings resurrect a nearly 20-year controversy over whether human chorionic gonadotropin (hCG), a hormone produced in high amounts during pregnancy, or its core fragments, or something else yields anti HIV and cancer-fighting activity against Kaposi’s sarcoma tumors.

Some researchers in the mid-1990s reported that “clinical-grade” hCG—crude or partially purified preparations of hCG extracted from pregnant women’s urine—shrunk these AIDS tumors, but they later retracted their original claim that hCG itself was the active component responsible for activity against Kaposi’s sarcoma.

“The real compound has been elusive,” said principal investigator Tony Antakly, PhD, a biochemist at the University of Montreal, who said it has taken his small group of researchers more than 12 years to find the answer.

Early on, and shortly before this retraction, Antakly’s group tested highly purified or recombinant hCG in Kaposi’s sarcoma cells and found no anti-cancer effects. They concluded that the cancer-fighting compound, closely associated with the pregnancy hormone, must be removed when hCG is purified.

Both clinical-grade and recombinant hCG are approved by the U.S. Food and Drug Administration as prescription medications for the treatment of select cases of female infertility and as hormone treatment for men.

The researchers narrowed their search to small molecular weight factors present in clinical-grade hCG that they called hCG-like inhibitory products, or HIP. To find the active molecule or part of a molecule, they used a biochemical approach involving systematically splitting the molecule (fractionation), repeatedly performing biological assays and chemical characterization.

Their results indicate that a small metabolite—the product of transformation of a larger molecule carried throughout blood and urine—into a potent bioactive metabolite that affects living tissue.

“We don’t know if it changes only when needed,” Antakly said. “Perhaps in cancer, it changes to fight the disease.”

This HIP metabolite, they discovered, rides “piggyback” on the larger hCG molecule, which chaperones it to target cells. When hCG is extensively purified, the metabolite loses its ride and disappears, Antakly stated.

However, when he and his colleagues exposed human Kaposi’s sarcoma cells in tissue cultures to hCG after purification from pregnant women’s urine, he said the active HIP metabolite “wiped out the cancer cells completely.”

Antakly said they do not yet know whether a synthetic replica of the HIP metabolite, which they are developing, is safe and effective to use at high doses in patients with cancer. However, in preliminary tests in cancer patients, they have shown that the “natural” HIP (purified from clinical-grade hCG) is safe and has anti-cancer activity.

William Raillant-Clark | AlphaGalileo
Further information:
http://www.umontreal.ca

Further reports about: Mystery anti-cancer cancer-fighting hormone metabolite pregnancy sarcoma synthetic tumors urine

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>