Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mystery solved of source of anti-cancer effects in pregnancy hormone


University of Montreal scientists have identified a small molecule found in pregnant women’s urine that apparently blocks the growth of several types of cancers, including AIDS-related Kaposi’s sarcoma, which currently has no cure. Their study results will be presented Monday at the joint meeting of the International Society of Endocrinology and The Endocrine Society: ICE/ENDO 2014 in Chicago.

These findings resurrect a nearly 20-year controversy over whether human chorionic gonadotropin (hCG), a hormone produced in high amounts during pregnancy, or its core fragments, or something else yields anti HIV and cancer-fighting activity against Kaposi’s sarcoma tumors.

Some researchers in the mid-1990s reported that “clinical-grade” hCG—crude or partially purified preparations of hCG extracted from pregnant women’s urine—shrunk these AIDS tumors, but they later retracted their original claim that hCG itself was the active component responsible for activity against Kaposi’s sarcoma.

“The real compound has been elusive,” said principal investigator Tony Antakly, PhD, a biochemist at the University of Montreal, who said it has taken his small group of researchers more than 12 years to find the answer.

Early on, and shortly before this retraction, Antakly’s group tested highly purified or recombinant hCG in Kaposi’s sarcoma cells and found no anti-cancer effects. They concluded that the cancer-fighting compound, closely associated with the pregnancy hormone, must be removed when hCG is purified.

Both clinical-grade and recombinant hCG are approved by the U.S. Food and Drug Administration as prescription medications for the treatment of select cases of female infertility and as hormone treatment for men.

The researchers narrowed their search to small molecular weight factors present in clinical-grade hCG that they called hCG-like inhibitory products, or HIP. To find the active molecule or part of a molecule, they used a biochemical approach involving systematically splitting the molecule (fractionation), repeatedly performing biological assays and chemical characterization.

Their results indicate that a small metabolite—the product of transformation of a larger molecule carried throughout blood and urine—into a potent bioactive metabolite that affects living tissue.

“We don’t know if it changes only when needed,” Antakly said. “Perhaps in cancer, it changes to fight the disease.”

This HIP metabolite, they discovered, rides “piggyback” on the larger hCG molecule, which chaperones it to target cells. When hCG is extensively purified, the metabolite loses its ride and disappears, Antakly stated.

However, when he and his colleagues exposed human Kaposi’s sarcoma cells in tissue cultures to hCG after purification from pregnant women’s urine, he said the active HIP metabolite “wiped out the cancer cells completely.”

Antakly said they do not yet know whether a synthetic replica of the HIP metabolite, which they are developing, is safe and effective to use at high doses in patients with cancer. However, in preliminary tests in cancer patients, they have shown that the “natural” HIP (purified from clinical-grade hCG) is safe and has anti-cancer activity.

William Raillant-Clark | AlphaGalileo
Further information:

Further reports about: Mystery anti-cancer cancer-fighting hormone metabolite pregnancy sarcoma synthetic tumors urine

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>