Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mystery solved of source of anti-cancer effects in pregnancy hormone

24.06.2014

University of Montreal scientists have identified a small molecule found in pregnant women’s urine that apparently blocks the growth of several types of cancers, including AIDS-related Kaposi’s sarcoma, which currently has no cure. Their study results will be presented Monday at the joint meeting of the International Society of Endocrinology and The Endocrine Society: ICE/ENDO 2014 in Chicago.

These findings resurrect a nearly 20-year controversy over whether human chorionic gonadotropin (hCG), a hormone produced in high amounts during pregnancy, or its core fragments, or something else yields anti HIV and cancer-fighting activity against Kaposi’s sarcoma tumors.

Some researchers in the mid-1990s reported that “clinical-grade” hCG—crude or partially purified preparations of hCG extracted from pregnant women’s urine—shrunk these AIDS tumors, but they later retracted their original claim that hCG itself was the active component responsible for activity against Kaposi’s sarcoma.

“The real compound has been elusive,” said principal investigator Tony Antakly, PhD, a biochemist at the University of Montreal, who said it has taken his small group of researchers more than 12 years to find the answer.

Early on, and shortly before this retraction, Antakly’s group tested highly purified or recombinant hCG in Kaposi’s sarcoma cells and found no anti-cancer effects. They concluded that the cancer-fighting compound, closely associated with the pregnancy hormone, must be removed when hCG is purified.

Both clinical-grade and recombinant hCG are approved by the U.S. Food and Drug Administration as prescription medications for the treatment of select cases of female infertility and as hormone treatment for men.

The researchers narrowed their search to small molecular weight factors present in clinical-grade hCG that they called hCG-like inhibitory products, or HIP. To find the active molecule or part of a molecule, they used a biochemical approach involving systematically splitting the molecule (fractionation), repeatedly performing biological assays and chemical characterization.

Their results indicate that a small metabolite—the product of transformation of a larger molecule carried throughout blood and urine—into a potent bioactive metabolite that affects living tissue.

“We don’t know if it changes only when needed,” Antakly said. “Perhaps in cancer, it changes to fight the disease.”

This HIP metabolite, they discovered, rides “piggyback” on the larger hCG molecule, which chaperones it to target cells. When hCG is extensively purified, the metabolite loses its ride and disappears, Antakly stated.

However, when he and his colleagues exposed human Kaposi’s sarcoma cells in tissue cultures to hCG after purification from pregnant women’s urine, he said the active HIP metabolite “wiped out the cancer cells completely.”

Antakly said they do not yet know whether a synthetic replica of the HIP metabolite, which they are developing, is safe and effective to use at high doses in patients with cancer. However, in preliminary tests in cancer patients, they have shown that the “natural” HIP (purified from clinical-grade hCG) is safe and has anti-cancer activity.

William Raillant-Clark | AlphaGalileo
Further information:
http://www.umontreal.ca

Further reports about: Mystery anti-cancer cancer-fighting hormone metabolite pregnancy sarcoma synthetic tumors urine

More articles from Health and Medicine:

nachricht Chronic stress induces fatal organ dysfunctions via a new neural circuit
21.08.2017 | Hokkaido University

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>