Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Muscle-invasive and non-muscle invasive bladder cancers arise from different stem cells

18.12.2013
Different parents, different children: Muscle-invasive and non-muscle invasive bladder cancers arise from different stem cells

Bladder cancer will kill upward of 170,000 people worldwide this year, but bladder cancer isn’t fatal in the bladder. Instead, in order to be fatal the disease must metastasize to faraway sites.

The question has been this: does localized, non-muscle invasive (NMI) bladder cancer eventually become the more dangerous, muscle-invasive (MI) form of the disease, or are NMI and MI bladder cancers genetically distinct from the start?

A University of Colorado Cancer Center study published today in the journal Stem Cells shows it’s the latter: the progenitor cells that create MI bladder cancer are different than the progenitor cells that create NMI bladder cancer. Though these two cancers grow at the same site, they are different diseases.

“This work provides an important new perspective on how we look at bladder cancer biology,” says Dan Theodorescu, MD, PhD, director of the University of Colorado Cancer Center and the study’s senior author.

The group including first author Garrett Dancik, PhD, genetically profiled two cell types that could give rise to bladder cancer – the basal and umbrella layers of the normal bladder lining (urothelium) – to discover the gene signatures specific to each of these cell populations.

Then the group compared these gene signatures to human bladder cancer samples. The tumor samples were distinct: those with the signature of umbrella cells were likely to be lower stage and patients eventually had favorable outcomes; tumors with the signatures of basal layer cells were likely to be higher stage and patients eventually had worse outcomes.

“We saw a fairly stark difference between these tumor types: those with basal signatures were distinctly more aggressive than those with umbrella signatures,” Theodorescu says. In fact, these signatures predicted tumor stage and patient survival better than many existing prognostic markers.

“Our results suggests that NMI cells arise from non-basal cells, whereas MI tumors arise from basal cells,” Theodorescu says.

“This may be an important biomarker for prognosis,” Theodorescu says. “With additional testing, we could use the signature to predict how aggressive a bladder cancer is likely to be. Knowing the risk can help doctors and patients make informed treatment decisions.”

This work was supported in part by National Institutes of Health grants CA075115 and CA104106.

Garth Sundem | EurekAlert!
Further information:
http://www.ucdenver.edu

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>