Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Muscle-invasive and non-muscle invasive bladder cancers arise from different stem cells

18.12.2013
Different parents, different children: Muscle-invasive and non-muscle invasive bladder cancers arise from different stem cells

Bladder cancer will kill upward of 170,000 people worldwide this year, but bladder cancer isn’t fatal in the bladder. Instead, in order to be fatal the disease must metastasize to faraway sites.

The question has been this: does localized, non-muscle invasive (NMI) bladder cancer eventually become the more dangerous, muscle-invasive (MI) form of the disease, or are NMI and MI bladder cancers genetically distinct from the start?

A University of Colorado Cancer Center study published today in the journal Stem Cells shows it’s the latter: the progenitor cells that create MI bladder cancer are different than the progenitor cells that create NMI bladder cancer. Though these two cancers grow at the same site, they are different diseases.

“This work provides an important new perspective on how we look at bladder cancer biology,” says Dan Theodorescu, MD, PhD, director of the University of Colorado Cancer Center and the study’s senior author.

The group including first author Garrett Dancik, PhD, genetically profiled two cell types that could give rise to bladder cancer – the basal and umbrella layers of the normal bladder lining (urothelium) – to discover the gene signatures specific to each of these cell populations.

Then the group compared these gene signatures to human bladder cancer samples. The tumor samples were distinct: those with the signature of umbrella cells were likely to be lower stage and patients eventually had favorable outcomes; tumors with the signatures of basal layer cells were likely to be higher stage and patients eventually had worse outcomes.

“We saw a fairly stark difference between these tumor types: those with basal signatures were distinctly more aggressive than those with umbrella signatures,” Theodorescu says. In fact, these signatures predicted tumor stage and patient survival better than many existing prognostic markers.

“Our results suggests that NMI cells arise from non-basal cells, whereas MI tumors arise from basal cells,” Theodorescu says.

“This may be an important biomarker for prognosis,” Theodorescu says. “With additional testing, we could use the signature to predict how aggressive a bladder cancer is likely to be. Knowing the risk can help doctors and patients make informed treatment decisions.”

This work was supported in part by National Institutes of Health grants CA075115 and CA104106.

Garth Sundem | EurekAlert!
Further information:
http://www.ucdenver.edu

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>