Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Muscle deterioration in patients with lung disease seen connected to heightened carbon dioxide levels in the blood

22.04.2009
Muscle deterioration in patients with lung diseases might be a direct consequence of high carbon dioxide levels in their blood, an international team of researchers headed by Prof. Yosef Gruenbaum of the Hebrew University of Jerusalem has found.

The incidence of lung diseases continues to increase in the world’s populations. For example, one in seven persons in the UK is affected by some form of chronic lung disease, most commonly chronic obstructive pulmonary disease (COPD) and asthma.

Many of these diseases also cause, in the worst cases, muscle deterioration as well as elevated levels of carbon dioxide (hypercapnia) in the bloodstream. In a normal situation, the lungs allow for a proper balance of oxygen from the atmosphere reaching the bloodstream and carbon dioxide from the bloodstream being transferred to the atmosphere.

It is still a matter of some controversy whether the high carbon dioxide levels in patients with chronic lung disease actually cause damage to those patients and specifically whether the loss of muscle is a consequence of those heightened levels.

Prof. Gruenbaum and his Ph.D. student Kfir Sharabi from the Department of Genetics at The Hebrew University, in collaboration with the groups of Dr. Amos J. Simon and Dr. Gideon Rechavi from the Sheba Medical Center and Tel Aviv University, and Dr. Jacob I. Sznajder, Dr. Richard I. Morimoto and Dr. Greg J. Beitel from Northwestern University in the U.S., teamed together to answer these questions. The results of their research appeared in a recent study published in the Proceedings of the National Academy of Sciences (PNAS) in the US.

They used the worm C. elegans, in which many basic processes are discovered, to study its response to induced elevated carbon dioxide levels. They found that levels exceeding 9% (normal level in living beings is around 5%) reduced the worm’s spontaneous movement capability, which was accompanied by deterioration of body muscle.

(These results suggest re-evaluating the consequences of the procedure of permissive hypercapnia, also known as therapeutic hypercapnia, in which patients with acute lung injury are treated with increased levels of carbon dioxide.)

In addition, there were signs that the experimental animals showed slower development, were less fertile, but, surprisingly, had an increased lifespan. Another unexpected result was the large number of genes that showed specific and dynamic changes after only one hour of exposure to the heightened carbon dioxide levels.

The researchers noted also that physiological and molecular response to hypercapnia appeared to be different from responses to heat shock or to low oxygen levels.

Jerry Barach | Hebrew University
Further information:
http://www.huji.ac.il

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>