Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mummies' false toes helped ancient Egyptians walk

Two artificial big toes – one found attached to the foot of an ancient Egyptian mummy – may have been the world's earliest functional prosthetic body parts, says the scientist who tested replicas on volunteers.

University of Manchester researcher, Dr Jacky Finch, has shown that a three-part wood and leather artefact housed in the Egyptian Museum in Cairo, along with a second one, the Greville Chester artificial toe on display in the British Museum, not only looked the part but also helped their toeless owners walk like Egyptians.

The toes date from before 600BC, predating what was hitherto thought to be the earliest known practical prosthesis – the Roman Capula Leg – by several hundred years.

Dr Finch, who is based in the University of Manchester's KNH Centre for Biomedical Egyptology, recruited two volunteers whose right big toe had been lost in order to test exact replicas of the artificial toes in the Gait Laboratory at Salford University's Centre for Rehabilitation and Human Performance Research.

Writing in the Lancet, Dr Finch said: "To be classed as true prosthetic devices any replacement must satisfy several criteria. The material must withstand bodily forces so that it does not snap or crack with use. Proportion is important and the appearance must be sufficiently lifelike as to be acceptable to both the wearer and those around them. The stump must also be kept clean, so it must be easy to take on and off. But most importantly it must assist walking.

She continued: "The big toe is thought to carry some 40% of the bodyweight and is responsible for forward propulsion, although those without it can adapt well. To accurately determine any level of function requires the application of gait analysis techniques involving integrated cameras and pressure devices placed along a walkway."

The volunteers were asked to wear the toes with replica Egyptian sandals and, while neither design was expected to perform exactly like a real big toe, one of the volunteers was able to walk extremely well with both artificial toes. No significant elevation in pressure under the foot was recorded for either toe, although both volunteers said they found the Cairo toe particularly comfortable.

The Greville Chester toe – made from cartonnage, a sort of papier maché made using linen, glue and plaster – shows considerable signs of wear, while the Cairo toe has certain features, such as a simple hinge, a chamfered front edge and a flattened underside.

"The wear on the Greville Chester toe and the important design features on the Cairo toe led me to speculate that these toes were perhaps worn by their owners in life and not simply attached to the foot during mummification for religious or ritualistic reasons," said Dr Finch.

"However, until we were able to test replicas of both toes using volunteers under laboratory conditions, it remained uncertain if they could indeed help their owners to walk.

"My findings strongly suggest that both of these designs were capable of functioning as replacements for the lost toe and so could indeed be classed as prosthetic devices. If that is the case then it would appear that the first glimmers of this branch of medicine should be firmly laid at the feet of the ancient Egyptians."

Aeron Haworth | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>