Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mummies' false toes helped ancient Egyptians walk

14.02.2011
Two artificial big toes – one found attached to the foot of an ancient Egyptian mummy – may have been the world's earliest functional prosthetic body parts, says the scientist who tested replicas on volunteers.

University of Manchester researcher, Dr Jacky Finch, has shown that a three-part wood and leather artefact housed in the Egyptian Museum in Cairo, along with a second one, the Greville Chester artificial toe on display in the British Museum, not only looked the part but also helped their toeless owners walk like Egyptians.

The toes date from before 600BC, predating what was hitherto thought to be the earliest known practical prosthesis – the Roman Capula Leg – by several hundred years.

Dr Finch, who is based in the University of Manchester's KNH Centre for Biomedical Egyptology, recruited two volunteers whose right big toe had been lost in order to test exact replicas of the artificial toes in the Gait Laboratory at Salford University's Centre for Rehabilitation and Human Performance Research.

Writing in the Lancet, Dr Finch said: "To be classed as true prosthetic devices any replacement must satisfy several criteria. The material must withstand bodily forces so that it does not snap or crack with use. Proportion is important and the appearance must be sufficiently lifelike as to be acceptable to both the wearer and those around them. The stump must also be kept clean, so it must be easy to take on and off. But most importantly it must assist walking.

She continued: "The big toe is thought to carry some 40% of the bodyweight and is responsible for forward propulsion, although those without it can adapt well. To accurately determine any level of function requires the application of gait analysis techniques involving integrated cameras and pressure devices placed along a walkway."

The volunteers were asked to wear the toes with replica Egyptian sandals and, while neither design was expected to perform exactly like a real big toe, one of the volunteers was able to walk extremely well with both artificial toes. No significant elevation in pressure under the foot was recorded for either toe, although both volunteers said they found the Cairo toe particularly comfortable.

The Greville Chester toe – made from cartonnage, a sort of papier maché made using linen, glue and plaster – shows considerable signs of wear, while the Cairo toe has certain features, such as a simple hinge, a chamfered front edge and a flattened underside.

"The wear on the Greville Chester toe and the important design features on the Cairo toe led me to speculate that these toes were perhaps worn by their owners in life and not simply attached to the foot during mummification for religious or ritualistic reasons," said Dr Finch.

"However, until we were able to test replicas of both toes using volunteers under laboratory conditions, it remained uncertain if they could indeed help their owners to walk.

"My findings strongly suggest that both of these designs were capable of functioning as replacements for the lost toe and so could indeed be classed as prosthetic devices. If that is the case then it would appear that the first glimmers of this branch of medicine should be firmly laid at the feet of the ancient Egyptians."

Aeron Haworth | EurekAlert!
Further information:
http://www.manchester.ac.uk

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>