Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mummies' false toes helped ancient Egyptians walk

14.02.2011
Two artificial big toes – one found attached to the foot of an ancient Egyptian mummy – may have been the world's earliest functional prosthetic body parts, says the scientist who tested replicas on volunteers.

University of Manchester researcher, Dr Jacky Finch, has shown that a three-part wood and leather artefact housed in the Egyptian Museum in Cairo, along with a second one, the Greville Chester artificial toe on display in the British Museum, not only looked the part but also helped their toeless owners walk like Egyptians.

The toes date from before 600BC, predating what was hitherto thought to be the earliest known practical prosthesis – the Roman Capula Leg – by several hundred years.

Dr Finch, who is based in the University of Manchester's KNH Centre for Biomedical Egyptology, recruited two volunteers whose right big toe had been lost in order to test exact replicas of the artificial toes in the Gait Laboratory at Salford University's Centre for Rehabilitation and Human Performance Research.

Writing in the Lancet, Dr Finch said: "To be classed as true prosthetic devices any replacement must satisfy several criteria. The material must withstand bodily forces so that it does not snap or crack with use. Proportion is important and the appearance must be sufficiently lifelike as to be acceptable to both the wearer and those around them. The stump must also be kept clean, so it must be easy to take on and off. But most importantly it must assist walking.

She continued: "The big toe is thought to carry some 40% of the bodyweight and is responsible for forward propulsion, although those without it can adapt well. To accurately determine any level of function requires the application of gait analysis techniques involving integrated cameras and pressure devices placed along a walkway."

The volunteers were asked to wear the toes with replica Egyptian sandals and, while neither design was expected to perform exactly like a real big toe, one of the volunteers was able to walk extremely well with both artificial toes. No significant elevation in pressure under the foot was recorded for either toe, although both volunteers said they found the Cairo toe particularly comfortable.

The Greville Chester toe – made from cartonnage, a sort of papier maché made using linen, glue and plaster – shows considerable signs of wear, while the Cairo toe has certain features, such as a simple hinge, a chamfered front edge and a flattened underside.

"The wear on the Greville Chester toe and the important design features on the Cairo toe led me to speculate that these toes were perhaps worn by their owners in life and not simply attached to the foot during mummification for religious or ritualistic reasons," said Dr Finch.

"However, until we were able to test replicas of both toes using volunteers under laboratory conditions, it remained uncertain if they could indeed help their owners to walk.

"My findings strongly suggest that both of these designs were capable of functioning as replacements for the lost toe and so could indeed be classed as prosthetic devices. If that is the case then it would appear that the first glimmers of this branch of medicine should be firmly laid at the feet of the ancient Egyptians."

Aeron Haworth | EurekAlert!
Further information:
http://www.manchester.ac.uk

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>