Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multiple sclerosis – predicting treatment success

07.01.2014
People with multiple sclerosis often have problems with their gait. A drug that can help them is unfortunately only effective in fewer than half of patients. Now medics from the Department of Neurology at the University of Würzburg have developed a method for predicting the success of this treatment.

People who suffer from multiple sclerosis (MS) have centers of inflammation in the brain and spinal cord, which cause symptoms that range in severity depending on their site and size. Many patients have gait problems that seriously impede them in everyday life.

The medicine of choice in this case is the agent fampridine, which has been approved in Germany since 2011. It blocks potassium channels on the surface of nerve axons and, in so doing, can improve the conductivity of nerve fibers. After taking fampridine, many sufferers are able to walk more quickly again; they also report that they feel steadier walking.

However, studies even before the approval of fampridine have shown that fewer than half of patients with MS actually benefit from taking the drug. The rest experience no change in their ability to walk. For this reason, physicians can currently only give the medication to their patients for two weeks initially as a trial. Only if the ability to walk has improved markedly after this time are they permitted to prescribe the drug on a permanent basis.

Magnetic stimulation to predict treatment success

A method for predicting treatment success has now been developed by scientists from the University of Würzburg. The team, led by medics Dr. Daniel Zeller and Dr. Mathias Buttmann, turned to a painless examination technique known as transcranial magnetic stimulation, which works without the use of harmful rays and has been used in clinical routine measurements for many years. The researchers have now published the results of their work in the Journal of Neurology, Neurosurgery and Psychiatry.

“We have taken a closer look at the correlation between the conduction velocity of motor pathways in the central nervous system and the response of gait disturbance to fampridine in patients with MS,” is how Daniel Zeller describes the study. Their findings are unequivocal: “With the help of magnetic stimulation it is possible to say in advance whether fampridine will improve a particular patient’s ability to walk,” says the medic.

The study

Twenty MS patients were examined by the scientists in this study. Prior to treatment with fampridine, they used transcranial magnetic stimulation to determine the so-called central motor conduction time (CMCT). This is the time that an electrical impulse takes to travel from the cerebral cortex to the nerve root level with the spine. “The central motor conduction time primarily reflects the degree of damage to motor pathways as a result of inflammatory demyelinating lesions,” explains Zeller.

The scientists also measured the walking speed of their study participants prior to beginning treatment as well as on day 14 of taking fampridine. Only if the speed increased by at least 20 percent over two different distances did they interpret this as a successful response to treatment.

The findings

The study revealed a significant correlation between the CMCT and the changes in walking speed while taking fampridine: the longer the CMCT was prior to treatment, the better the patients responded to the medication. In addition, the average CMCT prior to treatment in the group of treatment responders was significantly higher than in patients who did not respond to fampridine (the non-responders). The same result was also found when the scientists relaxed the response criterion to include a ten-percent improvement over both walking distances.

In summary, the study demonstrated that taking fampridine brought no improvements in walking speed for any patient with a normal CMCT. All the participants for whom the drug was effective had a longer CMCT prior to starting treatment. And only in some patients with a longer CMCT did fampridine treatment remain unsuccessful.

“This finding is consistent with what we presume is fampridine’s mode of action,” says Daniel Zeller. The agent ultimately improves impulse conduction in central pathways and their conduction velocity.

In particular, however, the study indicated that MS patients with a normal central conduction time are extremely unlikely to benefit from fampridine, whereas a longer CMCT prior to treatment increases the possibility of a response. If these results are confirmed by a larger study, magnetic stimulation could help neurologists in clinical practice to estimate the likely success of treatment with fampridine in advance, thereby avoiding unnecessary fampridine treatment trials.

About Transcranial Magnetic Stimulation

In Transcranial Magnetic Stimulation, physicians place a ring-shaped magnetic coil near the skull. This coil produces a rapidly changing magnetic field that sends magnetic impulses through the skullcap into the brain. There it triggers an action potential in the neurons and the nerve cell transmits an impulse, which in turn can be measured from outside. Even though the technology is only a few decades old, it is now routinely used in research and diagnostics.

Central motor conduction time may predict response to fampridine in multiple sclerosis patients. Daniel Zeller, Karlheinz Reiners, Stefan Bräuninger, Mathias Buttmann. J Neurol Neurosurg Psychiatry doi:10.1136/jnnp-2013-306860.

Contact

Dr. Daniel Zeller, Department of Neurology at the University of Würzburg
T: +49 (0)931 201-23766, e-mail: Zeller_D@ukw.de or
Dr. Mathias Buttmann, Department of Neurology at the University of Würzburg
T.: +49 (0)931 201-24617, e-mail: m.buttmann@ukw.de

Gunnar Bartsch | idw
Further information:
http://www.uni-wuerzburg.de

More articles from Health and Medicine:

nachricht New evidence: How amino acid cysteine combats Huntington's disease
27.07.2016 | Johns Hopkins Medicine

nachricht Cord blood outperforms matched, unrelated donor in bone marrow transplant
27.07.2016 | University of Colorado Anschutz Medical Campus

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

New material could advance superconductivity

28.07.2016 | Materials Sciences

CO2 can be stored underground for 10 times the length needed to avoid climatic impact

28.07.2016 | Earth Sciences

The intravenous swim team

28.07.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>