Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multiple sclerosis – predicting treatment success

07.01.2014
People with multiple sclerosis often have problems with their gait. A drug that can help them is unfortunately only effective in fewer than half of patients. Now medics from the Department of Neurology at the University of Würzburg have developed a method for predicting the success of this treatment.

People who suffer from multiple sclerosis (MS) have centers of inflammation in the brain and spinal cord, which cause symptoms that range in severity depending on their site and size. Many patients have gait problems that seriously impede them in everyday life.

The medicine of choice in this case is the agent fampridine, which has been approved in Germany since 2011. It blocks potassium channels on the surface of nerve axons and, in so doing, can improve the conductivity of nerve fibers. After taking fampridine, many sufferers are able to walk more quickly again; they also report that they feel steadier walking.

However, studies even before the approval of fampridine have shown that fewer than half of patients with MS actually benefit from taking the drug. The rest experience no change in their ability to walk. For this reason, physicians can currently only give the medication to their patients for two weeks initially as a trial. Only if the ability to walk has improved markedly after this time are they permitted to prescribe the drug on a permanent basis.

Magnetic stimulation to predict treatment success

A method for predicting treatment success has now been developed by scientists from the University of Würzburg. The team, led by medics Dr. Daniel Zeller and Dr. Mathias Buttmann, turned to a painless examination technique known as transcranial magnetic stimulation, which works without the use of harmful rays and has been used in clinical routine measurements for many years. The researchers have now published the results of their work in the Journal of Neurology, Neurosurgery and Psychiatry.

“We have taken a closer look at the correlation between the conduction velocity of motor pathways in the central nervous system and the response of gait disturbance to fampridine in patients with MS,” is how Daniel Zeller describes the study. Their findings are unequivocal: “With the help of magnetic stimulation it is possible to say in advance whether fampridine will improve a particular patient’s ability to walk,” says the medic.

The study

Twenty MS patients were examined by the scientists in this study. Prior to treatment with fampridine, they used transcranial magnetic stimulation to determine the so-called central motor conduction time (CMCT). This is the time that an electrical impulse takes to travel from the cerebral cortex to the nerve root level with the spine. “The central motor conduction time primarily reflects the degree of damage to motor pathways as a result of inflammatory demyelinating lesions,” explains Zeller.

The scientists also measured the walking speed of their study participants prior to beginning treatment as well as on day 14 of taking fampridine. Only if the speed increased by at least 20 percent over two different distances did they interpret this as a successful response to treatment.

The findings

The study revealed a significant correlation between the CMCT and the changes in walking speed while taking fampridine: the longer the CMCT was prior to treatment, the better the patients responded to the medication. In addition, the average CMCT prior to treatment in the group of treatment responders was significantly higher than in patients who did not respond to fampridine (the non-responders). The same result was also found when the scientists relaxed the response criterion to include a ten-percent improvement over both walking distances.

In summary, the study demonstrated that taking fampridine brought no improvements in walking speed for any patient with a normal CMCT. All the participants for whom the drug was effective had a longer CMCT prior to starting treatment. And only in some patients with a longer CMCT did fampridine treatment remain unsuccessful.

“This finding is consistent with what we presume is fampridine’s mode of action,” says Daniel Zeller. The agent ultimately improves impulse conduction in central pathways and their conduction velocity.

In particular, however, the study indicated that MS patients with a normal central conduction time are extremely unlikely to benefit from fampridine, whereas a longer CMCT prior to treatment increases the possibility of a response. If these results are confirmed by a larger study, magnetic stimulation could help neurologists in clinical practice to estimate the likely success of treatment with fampridine in advance, thereby avoiding unnecessary fampridine treatment trials.

About Transcranial Magnetic Stimulation

In Transcranial Magnetic Stimulation, physicians place a ring-shaped magnetic coil near the skull. This coil produces a rapidly changing magnetic field that sends magnetic impulses through the skullcap into the brain. There it triggers an action potential in the neurons and the nerve cell transmits an impulse, which in turn can be measured from outside. Even though the technology is only a few decades old, it is now routinely used in research and diagnostics.

Central motor conduction time may predict response to fampridine in multiple sclerosis patients. Daniel Zeller, Karlheinz Reiners, Stefan Bräuninger, Mathias Buttmann. J Neurol Neurosurg Psychiatry doi:10.1136/jnnp-2013-306860.

Contact

Dr. Daniel Zeller, Department of Neurology at the University of Würzburg
T: +49 (0)931 201-23766, e-mail: Zeller_D@ukw.de or
Dr. Mathias Buttmann, Department of Neurology at the University of Würzburg
T.: +49 (0)931 201-24617, e-mail: m.buttmann@ukw.de

Gunnar Bartsch | idw
Further information:
http://www.uni-wuerzburg.de

More articles from Health and Medicine:

nachricht Experimental MERS vaccine shows promise in animal studies
29.07.2015 | NIH/National Institute of Allergy and Infectious Diseases

nachricht It don't mean a thing if the brain ain't got that swing
28.07.2015 | University of California - Berkeley

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

Im Focus: NASA satellite camera provides 'EPIC' view of Earth

A NASA camera on the Deep Space Climate Observatory (DSCOVR) satellite has returned its first view of the entire sunlit side of Earth from one million miles away.

The color images of Earth from NASA's Earth Polychromatic Imaging Camera (EPIC) are generated by combining three separate images to create a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

A New Litmus Test for Chaos?

29.07.2015 | Physics and Astronomy

New Computer Model Could Explain how Simple Molecules Took First Step Toward Life

29.07.2015 | Life Sciences

New ERC calls published under Horizon 2020

29.07.2015 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>