Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multiple sclerosis – predicting treatment success

07.01.2014
People with multiple sclerosis often have problems with their gait. A drug that can help them is unfortunately only effective in fewer than half of patients. Now medics from the Department of Neurology at the University of Würzburg have developed a method for predicting the success of this treatment.

People who suffer from multiple sclerosis (MS) have centers of inflammation in the brain and spinal cord, which cause symptoms that range in severity depending on their site and size. Many patients have gait problems that seriously impede them in everyday life.

The medicine of choice in this case is the agent fampridine, which has been approved in Germany since 2011. It blocks potassium channels on the surface of nerve axons and, in so doing, can improve the conductivity of nerve fibers. After taking fampridine, many sufferers are able to walk more quickly again; they also report that they feel steadier walking.

However, studies even before the approval of fampridine have shown that fewer than half of patients with MS actually benefit from taking the drug. The rest experience no change in their ability to walk. For this reason, physicians can currently only give the medication to their patients for two weeks initially as a trial. Only if the ability to walk has improved markedly after this time are they permitted to prescribe the drug on a permanent basis.

Magnetic stimulation to predict treatment success

A method for predicting treatment success has now been developed by scientists from the University of Würzburg. The team, led by medics Dr. Daniel Zeller and Dr. Mathias Buttmann, turned to a painless examination technique known as transcranial magnetic stimulation, which works without the use of harmful rays and has been used in clinical routine measurements for many years. The researchers have now published the results of their work in the Journal of Neurology, Neurosurgery and Psychiatry.

“We have taken a closer look at the correlation between the conduction velocity of motor pathways in the central nervous system and the response of gait disturbance to fampridine in patients with MS,” is how Daniel Zeller describes the study. Their findings are unequivocal: “With the help of magnetic stimulation it is possible to say in advance whether fampridine will improve a particular patient’s ability to walk,” says the medic.

The study

Twenty MS patients were examined by the scientists in this study. Prior to treatment with fampridine, they used transcranial magnetic stimulation to determine the so-called central motor conduction time (CMCT). This is the time that an electrical impulse takes to travel from the cerebral cortex to the nerve root level with the spine. “The central motor conduction time primarily reflects the degree of damage to motor pathways as a result of inflammatory demyelinating lesions,” explains Zeller.

The scientists also measured the walking speed of their study participants prior to beginning treatment as well as on day 14 of taking fampridine. Only if the speed increased by at least 20 percent over two different distances did they interpret this as a successful response to treatment.

The findings

The study revealed a significant correlation between the CMCT and the changes in walking speed while taking fampridine: the longer the CMCT was prior to treatment, the better the patients responded to the medication. In addition, the average CMCT prior to treatment in the group of treatment responders was significantly higher than in patients who did not respond to fampridine (the non-responders). The same result was also found when the scientists relaxed the response criterion to include a ten-percent improvement over both walking distances.

In summary, the study demonstrated that taking fampridine brought no improvements in walking speed for any patient with a normal CMCT. All the participants for whom the drug was effective had a longer CMCT prior to starting treatment. And only in some patients with a longer CMCT did fampridine treatment remain unsuccessful.

“This finding is consistent with what we presume is fampridine’s mode of action,” says Daniel Zeller. The agent ultimately improves impulse conduction in central pathways and their conduction velocity.

In particular, however, the study indicated that MS patients with a normal central conduction time are extremely unlikely to benefit from fampridine, whereas a longer CMCT prior to treatment increases the possibility of a response. If these results are confirmed by a larger study, magnetic stimulation could help neurologists in clinical practice to estimate the likely success of treatment with fampridine in advance, thereby avoiding unnecessary fampridine treatment trials.

About Transcranial Magnetic Stimulation

In Transcranial Magnetic Stimulation, physicians place a ring-shaped magnetic coil near the skull. This coil produces a rapidly changing magnetic field that sends magnetic impulses through the skullcap into the brain. There it triggers an action potential in the neurons and the nerve cell transmits an impulse, which in turn can be measured from outside. Even though the technology is only a few decades old, it is now routinely used in research and diagnostics.

Central motor conduction time may predict response to fampridine in multiple sclerosis patients. Daniel Zeller, Karlheinz Reiners, Stefan Bräuninger, Mathias Buttmann. J Neurol Neurosurg Psychiatry doi:10.1136/jnnp-2013-306860.

Contact

Dr. Daniel Zeller, Department of Neurology at the University of Würzburg
T: +49 (0)931 201-23766, e-mail: Zeller_D@ukw.de or
Dr. Mathias Buttmann, Department of Neurology at the University of Würzburg
T.: +49 (0)931 201-24617, e-mail: m.buttmann@ukw.de

Gunnar Bartsch | idw
Further information:
http://www.uni-wuerzburg.de

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>