Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New multiple action intestinal hormone corrects diabetes

31.10.2013
Scientists from the Helmholtz Zentrum München (HMGU) and the Technische Universität München (TUM), together with scientists in the USA, have developed a new therapeutic approach for treatment of type 2 diabetes.

A novel single molecule hormone, which acts equally on the receptors of the insulin-stimulating hormones GLP-1 and GIP, was observed to reduce weight and improve blood sugar. The results have now been published in the medical journal 'Science Translational Medicine', and include data from successful clinical studies in partnership with the pharmaceutical company Roche.

GLP-1 (glucagon-like peptide 1) and GIP (gastric inhibitory peptide) are hormones that are formed by the digestive tract and that control food intake and numerous metabolic processes. When glucose (sugar) is ingested, these hormones primarily lead to increased insulin release and subsequent reduction in blood sugar, but they also affect appetite regulation and fat burning.

Some of the actions, which are combined in one molecule for the first time, are already in use for the treatment of type 2 diabetes. GLP-1 analogues, as well as DPP4 (dipeptidyl peptidase 4) inhibitors, which are thought to enhance GLP-1 action, are used to reduce blood sugar. A HMGU and TUM team led by Dr. Brian Finan and Prof. Dr. Matthias Tschöp at the Helmholtz Diabetes Center, working with Richard DiMarchi from Indiana University and colleagues from the University of Cincinnati, have now succeeded in developing a molecular structure that combines the effects of the two hormones. These novel molecules simultaneously stimulate two receptors (GLP-1 and GIP) and consequently maximize metabolic effects compared to each of the individual molecules, or currently available medicines that are based on individual intestinal hormones.

The newly discovered GLP-1/GIP co-agonists lead to improved blood sugar levels and to a significant weight loss and lower blood fat. Importantly, the researchers observed that the new substance also improved metabolism in humans, in addition to beneficial effects they discovered in several animal models. At the same time, there are indications that possible adverse effects, the most frequent of which are gastrointestinal complaints, are less common and less pronounced with this approach than with the individual hormones.

“Our results give us additional confidence that our combinatorial approach of modulating brain regulatory centers via natural gut hormone signals has superior potential for a transformative diabetes treatment”, explains Prof. Tschöp. He adds a note of caution however: “Still, this approach has to go through several more years of intense research, clinical testing, and safety evaluations, before these substances may become available for patients”. Dr. Finan, the first author of the study, points out that there may be unprecedented potential: “We are quite excited about this new multi-functional agent approach and believe it could become an integral part of a next generation of personalized therapies for type 2 diabetes, as the ratio of the GLP-1 and GIP signal strengths could be adjusted depending on the individual needs of patients.” The studies which were just published in Science Translational Medicine are perfectly aligned with the research objective of at the Helmholtz Zentrum München, partner of the German Center for Diabetes Research (DZD), which is to establish new approaches to the diagnosis, therapy and prevention of civilization's major widespread diseases and to further develop these approaches as quickly as possible in the context of translational research in order to provide specific benefits for society.

Further information
Original publication:
Finan, B. et al. (2013). Novel Unimolecular Dual-Incretins Maximize Metabolic Benefits in Rodents, Monkeys, and Humans, Science Translational Medicine, doi: 10.1126/scitranslmed.3007218

As German Research Center for Environmental Health, Helmholtz Zentrum München pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes mellitus and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München has about 2,100 staff members and is headquartered in Neuherberg in the north of Munich. Helmholtz Zentrum München is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 34,000 staff members.

The German Center for Diabetes Research (DZD) brings together experts in the field of diabetes research and interlinks basic research, epidemiology and clinical applications. Members are the German Diabetes Center in Düsseldorf, the German Institute of Human Nutrition (DIfE) in Potsdam-Rehbrücke, Helmholtz Zentrum München – German Research Center for Environmental Health, the Paul Langerhans Institutes of the University Hospital Carl Gustav Carus in Dresden and the University of Tübingen, as well as the Gottfried Wilhelm Leibniz Association and the Helmholtz Association of German Research Centres. The objective of the DZD is to find answers to open questions in diabetes research by means of a novel, integrative research approach and to make a significant contribution to improving the prevention, diagnosis and treatment of diabetes mellitus.

The Institute of Diabetes and Obesity (IDO) studies the diseases of the metabolic syndrome by means of systems biological and translational approaches on the basis of cellular systems, genetically modified mouse models and clinical intervention studies. It seeks to discover new signaling pathways in order to develop innovative therapeutic approaches for the personalized prevention and treatment of obesity, diabetes and their concomitant diseases. IDO is part of the Helmholtz Diabetes Center (HDC).

Specialist contact
Prof. Matthias Tschöp, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Institute of Diabetes and Obesity, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany - Phone: +49 89-3187-2103

Matthias Tschoep | EurekAlert!
Further information:
http://www.helmholtz-muenchen.de

More articles from Health and Medicine:

nachricht Cholesterol-lowering drugs may fight infectious disease
22.08.2017 | Duke University

nachricht Once invincible superbug squashed by 'superteam' of antibiotics
22.08.2017 | University at Buffalo

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>