Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MU researchers show potential for new cancer detection and therapy method

23.04.2010
University of Missouri School of Medicine scientists explain a potentially new early cancer detection and treatment method using nanoparticles created at MU in an article published in the Proceedings of the National Academy of Sciences. The article illustrates how engineered gold nanoparticles tied to a cancer-specific receptor could be targeted to tumor cells to treat prostate, breast or lung cancers in humans.

"When injected into the body, the Gastrin Releasing Peptide (GRP) cancer receptor serves as a signaling device to the gold nanoparticle, which allows for targeted delivery to the tumor site," said Kattesh Katti, PhD, who wrote the article with Raghuraman Kannan, PhD. "Consequently, the radiotherapeutic properties of such nanoparticles also provides valuable imaging and therapeutic tools that can be used for early cancer detection and therapy in various human cancers."

Because GRP receptor mediated imaging and the radiotherapy specifically targets cancer cells, patients could benefit from a more effective treatment with fewer side effects. GRP receptors are abundant in prostate, breast and small lung cancer cells, and the effectiveness of Katti and Kannan's gold nanoparticles has been proved in numerous studies.

"The development of GRP-receptor specific gold nanoparticles and proof of cancer receptor specificity in living subjects, as described by Drs. Katti and Kannan, is a significant and critical step toward the utility of engineered gold nanoparticles in molecular imaging and therapy of various cancers," said Institute of Medicine member Sanjiv Sam Gambhir, MD, PhD, Virginia and D. K. Ludwig Professor, as well as director of the Molecular Imaging Program and Canary Center for Cancer Early Detection at Stanford University.

Katti, Kannan, and others with the MU School of Medicine Department of Radiology have been researching the development of tumor specific gold nanoparticles for more than five years.

"This discovery presents a plethora of realistic opportunities for clinical translation, not only in the development of nanomedicine-based diagnostic technologies for early stage detection but also for therapies for treating tumors in prostate, breast and small cell lung cancer," Kannan said.

Kannan and Katti have developed a library of more than 85 engineered nanoparticles for use in molecular imaging and therapy. With scientists at the MU Research Reactor (MURR), the most powerful university reactor in the world, they have developed cancer specific therapeutic radioactive gold nanoparticles. MURR is one of only a few sites worldwide able to produce cancer targeting gold nanoparticles.

In 2005, Katti received a prostate cancer research grant that distinguished MU as one of only 12 universities to participate in the National Cancer Institute's national nanotechnology platform partnership. The grant supported MU faculty members in radiology, MURR, veterinary medicine, chemistry, physics and other programs to collaborate in establishing MU as a leader in advancing nanomedicine for the early detection and treatment of cancer.

In addition to serving as director of MU's Cancer Nanotechnology Platform, Katti is a Curators' Distinguished Professor in Radiology and Physics and Margaret Proctor Mulligan Distinguished Professor in Medical Research. Kannan is the Michael J. and Sharon R. Bukstein Distinguished Faculty Scholar in Cancer Research.

The article, titled "Bombesin Functionalized Gold Nanoparticles Show In vitro and In vivo Cancer Receptor Specificity," is available online at: http://www.pnas.org/content/early/2010/04/16/1002143107.abstract

The Proceedings of the National Academy of Sciences of the United States of America is one of the world's most-cited multidisciplinary scientific serials. Since its establishment in 1914, it continues to publish cutting-edge research reports, commentaries, reviews, perspectives, colloquium papers, and actions of the academy.

Laura Gerding | EurekAlert!
Further information:
http://www.missouri.edu

Further reports about: Cancer GRP Medicine Science TV cancer cells gold nanoparticle lung cancer radiology

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>