Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MU researcher developing test for swallowing disorder treatments

29.04.2010
Test could lead to treatment for Lou Gehrig's patients

Muscle degeneration and confinement to a wheelchair are the hallmarks of Lou Gehrig's disease, Parkinson's, muscular dystrophy and other neurodegenerative diseases. One of the silent, and most serious, symptoms of these diseases is losing the ability to swallow.

Swallowing impairment, or dysphagia, affects about 500,000 people annually in the U.S., but little is known about the disorder and only a few temporary, behavioral treatments are available. Now, a University of Missouri researcher is developing a test that might help pinpoint the neurological or physiological origins of swallowing disorders, leading to possible life-saving treatments.

"A lot of these diseases attack the limbs, but you don't die because your limbs don't work," said Teresa Lever, assistant professor in department of Communication Science and Disorders at the MU School of Health Professions. "Even though we can give patients feeding tubes with all the nutrients they need, there is no cure for swallowing disorders associated with neurodegenerative diseases, and patients still die early. I am trying to determine what is driving that mortality. If it is swallowing impairment, we need to know how the impairment starts and how we could treat it successfully, which would then improve patients' lifespan and quality of life."

Lever is trying to determine which components of the nervous system that control swallowing are impaired in patients with neurodegenerative diseases. To swallow, the brain must first sense the need to swallow, and then it must activate the right muscles to complete the process. In her study, she is developing an electrophysiological technique for use with mouse models of human neurological diseases that will show which regions of the brain are being used to swallow and which are short-circuiting. After finding which regions of the brain are not working correctly for each disease, treatments, such as stem cell therapy, gene therapy or certain medications, might be used to target those regions. The first disease that she is focusing on is Lou Gehrig's disease, also known as amyotrophic lateral sclerosis or ALS.

"Instead of just treating a behavior, I am trying to determine the source of that behavior," Lever said. "Swallowing is a reflex – you sense the need to swallow and then you have a muscular response. If we find that the sensory component of the swallowing reflex is being impaired along with the neuromuscular component, then many of these neurological diseases may be much more complex than we have been led to believe. It would tell us that our evaluation and treatment of swallowing disorders should not just focus on the muscles and the nerves that stimulate them, but also on the sensory input. It would really create a paradigm shift in the research, especially for ALS which is classified as a motor neuron disease."

Lever recently received a $300,000 grant from the National Institutes of Health for the study. She said that testing will begin in July and expects substantial results in the next two to three years.

Lever's research has been published in the journal Dysphagia.

Christian Basi | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>