Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MSU researcher links cholesterol crystals to cardiovascular attacks

31.03.2009
For the first time ever, a Michigan State University researcher has shown cholesterol crystals can disrupt plaque in a patient’s cardiovascular system, causing a heart attack or stroke.

The findings by a team led by George Abela, chief of the cardiology division in MSU’s College of Human Medicine, could dramatically shift the way doctors and researchers approach cardiovascular attacks. Abela’s findings appear in the April issue of the American Journal of Cardiology.

“Any time there is something completely new or unique in medical research, it is met with healthy skepticism,” said Abela, who has been working with cholesterol crystals since 2001. “But we have found something that can help dramatically change how we treat heart disease.”

What Abela and his team found is that as cholesterol builds up along the wall of an artery, it crystallizes from a liquid to a solid state and then expands.

“As the cholesterol crystallizes, two things can happen,” Abela said. “If it’s a big pool of cholesterol, it will expand, causing the ‘cap’ of the deposit to tear off in the arterial wall. Or the crystals, which are sharp, needle-like structures, poke their way through the cap covering the cholesterol deposit, like nails through wood.”

The crystals then work their way into the bloodstream. It is the presence of this material, as well as damage to an artery, that disrupts plaque and puts the body’s natural defense mechanism – clotting – into action, which can lead to dangerous, if not fatal, clots.

Abela and his team studied coronary arteries and carotid plaques from patients who died of cardiovascular attacks. When comparing their findings against a control group, they found evidence of cholesterol crystals disrupting plaque.

The breakthrough in discovering the crystals’ impact came after Abela and colleagues found a new way to preserve tissue after an autopsy, using a vacuum dry method instead of an alcohol solution. The previous method would dissolve the crystals and prevent researchers and doctors from seeing the impact.

Abela also has found that cholesterol crystals released in the bloodstream during a cardiac attack or stroke can damage artery linings much further away from the site of the attack, leaving survivors at even greater risk. The research means health care providers now have another weapon in their arsenal against cardiovascular diseases.

“So far, treatments have not been focused on this process,” Abela said. “Now we have a target to attack with the various novel approaches. In the past, we’ve treated the various stages that lead to this final stage, rather than preventing or treating this final stage of the condition.”

In separate research published in the March edition of medical journal Atherosclerosis, Abela and colleagues looked at the physical triggers that can cause cholesterol crystallization. They found that physical conditions such as temperature can play a role in how quickly cholesterol crystallizes and potentially causes a rupture.

Michigan State University has been advancing knowledge and transforming lives through innovative teaching, research and outreach for more than 150 years. MSU is known internationally as a major public university with global reach and extraordinary impact. Its 17 degree-granting colleges attract scholars worldwide who are interested in combining education with practical problem solving.

Jason Cody | EurekAlert!
Further information:
http://www.msu.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>