Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MSU researcher develops E. coli vaccine

16.04.2009
A Michigan State University researcher has developed a working vaccine for a strain of E. coli that kills 2 million to 3 million children each year in the developing world.

Enterotoxigenic E. Coli, which is responsible for 60 percent to 70 percent of all E. coli diarrheal disease, also causes health problems for U.S. troops serving overseas and is responsible for what is commonly called traveler’s diarrhea.

A. Mahdi Saeed, professor of epidemiology and infectious disease in MSU’s colleges of Veterinary Medicine and Human Medicine, has applied for a patent for his discovery and has made contact with pharmaceutical companies for commercial production. Negotiations with several firms are ongoing.

“This strain of E. coli is an international health challenge that has a huge impact on humanity,” said Saeed, who has devoted four years to develop a working vaccine at MSU’s National Food Safety and Toxicology Center. “By creating a vaccine, we can save untold lives. The implications are massive.”

ETEC affects millions of adults and children across the globe, mainly in southern hemisphere countries throughout Africa and South America. It also poses a risk to U.S. troops serving in southern Asia and the Middle East.

Saeed’s breakthrough was discovering a way to overcome the miniscule molecular size of one of the illness-inducing toxins produced by the E. coli bug. Since the toxin was so small, it did not prompt the body’s defense system to develop immunity, allowing the same individual to repeatedly get sick, often with more severe health implications.

Saeed created a biological carrier to attach to the toxin that once introduced into the body induces a strong immune response. This was done by mapping the toxin’s biology and structure during the design of the vaccine. Saeed’s work was funded in part by a $510,000 grant from the National Institutes of Health.

After creating the carrier in a lab at MSU, Saeed and his team tested it on mice and found the biological activity of the toxin was enhanced by more than 40 percent, leading to its recognition by the body’s immune system. After immunizing a group of 10 rabbits, the vaccine led to the production of the highest neutralizing antibody ever reported for this type of the toxin.

Saeed hopes that human clinical trials could begin late in the year.

There also are several other human health implications for the vaccine, besides providing immunity against most E. coli disease, according to Saeed. Many patients who undergo anesthesia during a medical procedure surgery suffer from post-operative paralytic ileus, or an inability to have a bowel movement. A small oral dosage of the vaccine could act as a laxative, which often aren’t prescribed after a surgery for fear of side effects, Saeed said. A small dose also could help with urinary retention.

The vaccine will be available for animals as well, Saeed added. He pointed out the E. coli bug also is a major cause of sickness and death for newborn animals such as calves and piglets, which in the United States alone causes $300 million in loss of agricultural products each year.

Michigan State University has been advancing knowledge and transforming lives through innovative teaching, research and outreach for more than 150 years. MSU is known internationally as a major public university with global reach and extraordinary impact. Its 17 degree-granting colleges attract scholars worldwide who are interested in combining education with practical problem solving.

Jason Cody | EurekAlert!
Further information:
http://www.msu.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>