Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MSU-led research team proposes new way to classify personality disorders

13.10.2010
Research led by a Michigan State University psychologist is playing a key role in the effort to change the way mental health clinicians classify personality disorders.

The study by Christopher Hopwood and colleagues calls for a more scientific and practical method of categorizing personality disorders – a proposal that ultimately could improve treatment, Hopwood said.

“We’re proposing a different way of thinking about personality and personality disorders,” said Hopwood, MSU assistant professor of psychology and an experienced clinician. “There’s widespread agreement among personality disorder researchers that the current way to conceptualize personality disorders is not working.”

The study is being cited by the team of experts that currently is developing criteria for the manual used to diagnose personality disorders – the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders, or DSM-5, slated to come out in 2013.

The study is being considered for inclusion in the DSM-5. The DSM, published by the American Psychiatric Association, is considered the bible of the U.S. mental health industry and is used by insurance companies as the basis for treatment approval and payment. The study also will appear in an upcoming issue of the Journal of Personality Disorders.

The current method of classifying personality disorders, as spelled out in the fourth edition of the DSM, or DSM-IV, breaks personality disorders into 10 categories, Hopwood said. That system is flawed, he said, because it does not take into account severity of personality disorders in an efficient manner and often leads to overlapping diagnoses.

“It’s just not true that there are 10 types of personalities disorders, and that they’re all categorical – that you either have this personality disorder or you don’t,” Hopwood said. “Scientifically, it’s just not true.”

Hopwood and colleagues propose a new three-stage strategy for diagnosing personality disorders:

Stage One: Consider a patient’s normal personality traits, such as introversion/extroversion. “If a person is depressed and I’m a clinician, it might make a difference if I think they’re extroverted depressive rather than introverted depressive,” Hopwood said. “It may dictate the type of recommendations I make for them.” These normal personality traits also may indicate patient strengths that could help in overcoming psychiatric difficulties; such strengths are not assessed in the current DSM.

Stage Two: Create a numerical score to represent severity of the disorder. “We’re arguing that one single score can represent that severity, so clinicians can easily communicate with one another about how severe a patient is,” Hopwood said. “That may indicate decisions such as whether this person should be hospitalized or treated with outpatient care.”

Stage Three: Condense the list of 10 personality disorder categories to five dimensional ratings. Under this proposal, clinicians would diagnose how many symptoms of each disorder a patient has, rather than whether they have one or more of 10 disorders as in the current system. Hopwood said this is more reliable, valid and specific than the current system. He added that research has not sufficiently supported the validity of several current personality disorders. The proposed dimensional ratings are:

Peculiarity. The defining characteristic here is oddness in thought or behavior. This dimension includes the diagnoses of paranoid, schizotypal and schizoid.

Withdrawal. This includes avoidant personalities. “This may have to do with not wanting to leave the house,” Hopwood said.

Fearfulness. This combines disorders with opposite extremes of harm avoidance, such as antisocial (which involves fearlessness) and dependant or avoidant (which involves fearfulness).

Unstable. This is similar to the diagnosis of borderline in DSM-IV. The defining characteristic is instability, such as with relationships, identity or emotional experience.

Deliberate. This includes obsessive-compulsive disorder and other disorders defined by overly methodical behavior. “It’s having a rigid sense of how life should happen – how I should behave and how other people should behave,” Hopwood said.

Ultimately, Hopwood said, the proposal could improve both the system for diagnosing personality disorders as well as the outcome. “Presumably, if this leads to better clinical efficiency it could lead to better clinical care, and that’s in everybody’s interest,” he said.

Co-authors of the proposal include Andrew Skodol of the Sunbelt Collaborative, New York State Psychiatric Institute and Columbia Medical School, and Leslie Morey of Texas A&M University.

Skodol is chairperson and Morey is a member of the committee that will determine the criteria for diagnosing personality disorders in the upcoming DSM.

Michigan State University has been advancing knowledge and transforming lives through innovative teaching, research and outreach for more than 150 years. MSU is known internationally as a major public university with global reach and extraordinary impact. Its 17 degree-granting colleges attract scholars worldwide who are interested in combining education with practical problem solving.

Christopher Hopwood | EurekAlert!
Further information:
http://www.msu.edu

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>