MRI-guided laser procedure provides alternative to epilepsy surgery

For patients with mesial temporal lobe epilepsy (MTLE) that can't be controlled by medications, a minimally invasive laser procedure performed under MRI guidance provides a safe and effective alternative to surgery, suggests a study in the June issue of Neurosurgery , official journal of the Congress of Neurological Surgeons . The journal is published by Lippincott Williams & Wilkins , a part of Wolters Kluwer Health.

“Real-time magnetic resonance-guided stereotactic laser amygdalohippocampotomy (SLAH) is a technically novel, safe and effective alternative to open surgery,” according to the new research by Dr. Robert E. Gross of Emory University School of Medicine, Atlanta, and colleagues.

MRI Guides Precise Laser Destruction of Area Causing Epilepsy…

The researchers report their experience with MRI-guided SLAH in 13 adult patients with epilepsy mapped to a part of the brain called the mesial temporal lobe. The patients, median age 24 years, had “intractable” seizures despite treatment with antiepileptic drugs.

In the SLAH procedure, a saline-cooled fiberoptic laser probe was precisely targeted to the area of the brain—the “amygdalohippocampal complex”—responsible for the procedures. Using real-time MRI guidance, the neurosurgeon was able to pinpoint the area of the brain responsible for seizure activity and destroy (ablate) by computer-controlled laser energy, without harming neighboring brain tissue.

The technical aspects of the procedure were successfully carried out in all patients. Using thermal imaging and MRI guidance, the surgeons were able to see the area of laser ablation as treatment proceeded. The average laser exposure time was just under ten minutes.

On average, 60 percent of the amygdalohippocampal complex was destroyed in the SLAH procedure; the average length of the ablated area was 2.5 centimeters. Median time spent in the hospital was just one day—compared to a typical two to five-day stay after conventional temporal lobe surgery, and SLAH patients did not have to be admitted to the intensive care unit.

…With Good Control of Seizures at Follow-Up

Most important, the procedure was effective in reducing or eliminating seizures in patients with MTLE. At a median of 14 months after SLAH, ten out of thirteen patients achieved meaningful seizure reductions, while seven were free of “disabling seizures.” This included six out of nine patients whose epilepsy was caused by an abnormality called mesial temporal sclerosis.

Although some complications occurred, none were directly caused by laser application. Two patients had an additional SLAH procedure to control seizures, and another patient underwent standard open surgery.

Open brain surgery is the standard treatment for patients with intractable MTLE. Surgery has a high success rate, but carries a significant risk of neurological and cognitive (intellectual) impairment. Minimally invasive approaches like the new MRI-guided laser ablation technique might produce similar seizure control with lower risks than surgery.

The new study shows “technical feasibility and encouraging results” with the minimally invasive MRI-guided SLAH technique for patients with MTLE. Effectiveness in relieving or eliminating seizures approaches that of surgery—perhaps especially among patients whose seizures are caused by mesial temporal sclerosis. “These are promising results considering that this reflects our initial experience, and results may improve with greater experience with this novel technique,” notes Dr. Gross.

“Such minimally invasive techniques may be more desirable to patients and result in increased use of epilepsy surgery among the large number of medically intractable epilepsy patients,” Dr. Gross and colleagues conclude. They note that a larger, longer-term study of SLAH is underway, including assessment of the effects on cognitive function as well as seizures.

###

Click here to read the “Real-Time Magnetic Resonance-Guided Stereotactic Laser Amygdalohippocampotomy for Mesial Temporal Lobe Epilepsy.”

About Neurosurgery

Neurosurgery , the Official Journal of the Congress of Neurological Surgeons , is your most complete window to the contemporary field of neurosurgery. Members of the Congress and non-member subscribers receive 3,000 pages per year packed with the very latest science, technology, and medicine, not to mention full-text online access to the world's most complete, up-to-the-minute neurosurgery resource. For professionals aware of the rapid pace of developments in the field, Neurosurgery is nothing short of indispensable.

About Wolters Kluwer Health

Wolters Kluwer Health is a leading global provider of information, business intelligence and point-of-care solutions for the healthcare industry. Serving more than 150 countries worldwide, clinicians rely on Wolters Kluwer Health's market leading information-enabled tools and software solutions throughout their professional careers from training to research to practice. Major brands include Health Language®, Lexicomp®, Lippincott Williams & Wilkins, Medicom®, Medknow, Ovid®, Pharmacy OneSource®, ProVation® Medical and UpToDate®.

Wolters Kluwer Health is part of Wolters Kluwer, a market-leading global information services company. Wolters Kluwer had 2013 annual revenues of €3.6 billion ($4.7 billion), employs approximately 19,000 people worldwide, and maintains operations in over 40 countries across Europe, North America, Asia Pacific, and Latin America. Follow our official Twitter handle: @WKHealth.

Media Contact

Connie Hughes Eurek Alert!

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Bringing bio-inspired robots to life

Nebraska researcher Eric Markvicka gets NSF CAREER Award to pursue manufacture of novel materials for soft robotics and stretchable electronics. Engineers are increasingly eager to develop robots that mimic the…

Bella moths use poison to attract mates

Scientists are closer to finding out how. Pyrrolizidine alkaloids are as bitter and toxic as they are hard to pronounce. They’re produced by several different types of plants and are…

AI tool creates ‘synthetic’ images of cells

…for enhanced microscopy analysis. Observing individual cells through microscopes can reveal a range of important cell biological phenomena that frequently play a role in human diseases, but the process of…

Partners & Sponsors