Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Movement disorder symptoms are lessened by an antibiotic

11.03.2010
Treating worms with ampicillin helps restore normal movement

Discovery of an antibiotic's capacity to improve cell function in laboratory tests is providing movement disorder researchers with leads to more desirable molecules with potentially similar traits, according to University of Alabama scientists co-authoring a paper publishing March 10 in the journal Disease Models & Mechanisms.

"It's our hope that this discovery serves as the impetus for a proper clinical trial to evaluate the potential of drugs like ampicillin for early-onset torsion dystonia," said Dr. Guy Caldwell, associate professor of biological sciences at The University of Alabama. Dystonia is, like Parkinson's disease, a movement disorder. Combined, this class of diseases affects millions worldwide. People with early-onset dystonia have one good copy of the gene DYT1, and one problematic copy, in their DNA. These genes contain the information to make a protein called torsinA.

"When proteins go bad, they often cause disease, but they always have a normal function in our cells," Guy Caldwell said. "We looked to find molecules – not necessarily that reversed the mutated form of the protein – but instead enhanced the normal activity of the protein, thereby overcoming the deficiency caused by the mutant."

The UA researchers discovered that ampicillin, a common antibiotic of the penicillin group, serves to activate torsinA, which, in its normal form, appears to protect cells from stresses, such as protein misfolding – a problem known to impact various movement disorders.

Using a nematode animal model designed to evaluate torsinA activity, the UA lab rapidly screened through hundreds of compounds to identify those that were most effective at enhancing torsinA's normally protective function.

"From there, we collaborated with researchers at Harvard and UAB to validate our findings in human patient cells and mice," said Dr. Kim Caldwell, associate professor of biological sciences at UA.

"In human dystonia patient cells, ampicillin was efficacious and restored the patient cells back to the normal function," Kim Caldwell said. "And, the drug restored normal movement to mice that were genetic mimics of dystonia."

Collaborators in the UA-led study were Drs. Xandra O. Breakefield and her colleagues at Harvard and Yuqing Li and his colleagues at The University of Alabama at Birmingham, known as UAB. Dr. Songsong Cao, a former doctoral student in the Caldwell Lab, is the study's lead author; two UA doctoral students, Alexander J. Burdette and Pan Chen; and one former UA student, Amber Clark Buckley, are among the co-authors.

Furthermore, the research shows ampicillin enhances the capacity of torsinA to protect, within animal models, the neurons which produce dopamine from dying. The death of these neurons in human brains leads to the hallmark symptoms of Parkinson's disease.

In a statement accompanying the paper, the researchers caution against the long-term use of an antibiotic in disease treatment.

"We have taken ampicillin and used that as a base structure to find things that work like ampicillin but which aren't ampicillin," Guy Caldwell said. "Finding molecules that are not antibiotic and still have the capacity to activate torsinA has been an ongoing effort of our lab, and we have some exciting leads in that direction."

UA filed patents covering the use of antibiotics and other novel chemicals as activators of torsinA for treatment of dystonia and other diseases, including Parkinson's disease. The University has also entered into a collaborative research and licensing agreement with QRxPharma, a clinical stage pharmaceutical company, to identify, develop and commercially exploit new torsinA activator drugs.

The UA/QRxPharma research program is directed at re-engineering existing drug therapies for new clinical applications and identifying new drug candidates for uses including the treatment of dystonia, Parkinson's disease and other neurological disorders.

The project exemplifies, the researchers said, how disease model systems can be used to accelerate the development of gene and drug discovery and bring pharmaceuticals more quickly to the clinical trial stage.

Bringing a drug that does not already have FDA approval from the research and development stage to a patient takes an estimated 12 years and $800 million dollars, said Kim Caldwell. By evaluating the potential of molecules already pre-screened for toxicity and that have FDA approval provides a potentially quicker route to clinical trials.

"What we were hoping to do was circumvent a lot of the cost in bringing pharmaceutical help to dystonia patients," Kim Caldwell said.

The research was supported by the Bachmann-Strauss Dystonia and Parkinson Foundation, Dystonia Medical Research Foundation, the Jack Fasciana Fund for Dystonia Research and the National Institutes of Health.

UA's department of biological sciences is part of the College of Arts and Sciences, the University's largest division and the largest liberal arts college in the state. Students from the College have won numerous national awards including Rhodes Scholarships, Goldwater Scholarships and memberships on the USA Today Academic All American Team.

This work is published in Issue 3/4 of Volume 3 in the medical research journal Disease Models and Mechanisms (DMM) http://dmm.biologists.org.

Kristy Kain | EurekAlert!
Further information:
http://dmm.biologists.org

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>