Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Movement disorder symptoms are lessened by an antibiotic

Treating worms with ampicillin helps restore normal movement

Discovery of an antibiotic's capacity to improve cell function in laboratory tests is providing movement disorder researchers with leads to more desirable molecules with potentially similar traits, according to University of Alabama scientists co-authoring a paper publishing March 10 in the journal Disease Models & Mechanisms.

"It's our hope that this discovery serves as the impetus for a proper clinical trial to evaluate the potential of drugs like ampicillin for early-onset torsion dystonia," said Dr. Guy Caldwell, associate professor of biological sciences at The University of Alabama. Dystonia is, like Parkinson's disease, a movement disorder. Combined, this class of diseases affects millions worldwide. People with early-onset dystonia have one good copy of the gene DYT1, and one problematic copy, in their DNA. These genes contain the information to make a protein called torsinA.

"When proteins go bad, they often cause disease, but they always have a normal function in our cells," Guy Caldwell said. "We looked to find molecules – not necessarily that reversed the mutated form of the protein – but instead enhanced the normal activity of the protein, thereby overcoming the deficiency caused by the mutant."

The UA researchers discovered that ampicillin, a common antibiotic of the penicillin group, serves to activate torsinA, which, in its normal form, appears to protect cells from stresses, such as protein misfolding – a problem known to impact various movement disorders.

Using a nematode animal model designed to evaluate torsinA activity, the UA lab rapidly screened through hundreds of compounds to identify those that were most effective at enhancing torsinA's normally protective function.

"From there, we collaborated with researchers at Harvard and UAB to validate our findings in human patient cells and mice," said Dr. Kim Caldwell, associate professor of biological sciences at UA.

"In human dystonia patient cells, ampicillin was efficacious and restored the patient cells back to the normal function," Kim Caldwell said. "And, the drug restored normal movement to mice that were genetic mimics of dystonia."

Collaborators in the UA-led study were Drs. Xandra O. Breakefield and her colleagues at Harvard and Yuqing Li and his colleagues at The University of Alabama at Birmingham, known as UAB. Dr. Songsong Cao, a former doctoral student in the Caldwell Lab, is the study's lead author; two UA doctoral students, Alexander J. Burdette and Pan Chen; and one former UA student, Amber Clark Buckley, are among the co-authors.

Furthermore, the research shows ampicillin enhances the capacity of torsinA to protect, within animal models, the neurons which produce dopamine from dying. The death of these neurons in human brains leads to the hallmark symptoms of Parkinson's disease.

In a statement accompanying the paper, the researchers caution against the long-term use of an antibiotic in disease treatment.

"We have taken ampicillin and used that as a base structure to find things that work like ampicillin but which aren't ampicillin," Guy Caldwell said. "Finding molecules that are not antibiotic and still have the capacity to activate torsinA has been an ongoing effort of our lab, and we have some exciting leads in that direction."

UA filed patents covering the use of antibiotics and other novel chemicals as activators of torsinA for treatment of dystonia and other diseases, including Parkinson's disease. The University has also entered into a collaborative research and licensing agreement with QRxPharma, a clinical stage pharmaceutical company, to identify, develop and commercially exploit new torsinA activator drugs.

The UA/QRxPharma research program is directed at re-engineering existing drug therapies for new clinical applications and identifying new drug candidates for uses including the treatment of dystonia, Parkinson's disease and other neurological disorders.

The project exemplifies, the researchers said, how disease model systems can be used to accelerate the development of gene and drug discovery and bring pharmaceuticals more quickly to the clinical trial stage.

Bringing a drug that does not already have FDA approval from the research and development stage to a patient takes an estimated 12 years and $800 million dollars, said Kim Caldwell. By evaluating the potential of molecules already pre-screened for toxicity and that have FDA approval provides a potentially quicker route to clinical trials.

"What we were hoping to do was circumvent a lot of the cost in bringing pharmaceutical help to dystonia patients," Kim Caldwell said.

The research was supported by the Bachmann-Strauss Dystonia and Parkinson Foundation, Dystonia Medical Research Foundation, the Jack Fasciana Fund for Dystonia Research and the National Institutes of Health.

UA's department of biological sciences is part of the College of Arts and Sciences, the University's largest division and the largest liberal arts college in the state. Students from the College have won numerous national awards including Rhodes Scholarships, Goldwater Scholarships and memberships on the USA Today Academic All American Team.

This work is published in Issue 3/4 of Volume 3 in the medical research journal Disease Models and Mechanisms (DMM)

Kristy Kain | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Scientists develop tiny tooth-mounted sensors that can track what you eat
22.03.2018 | Tufts University

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>