Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mount Sinai researchers identify promising new drug target for kidney disease

12.03.2012
Researchers from Mount Sinai School of Medicine have identified a regulator protein that plays a crucial role in kidney fibrosis, a condition that leads to kidney failure. Finding this regulator provides a new therapeutic target for the millions of Americans affected by kidney failure. The research is published in the March 11 issue of Nature Medicine.

Led by John Cijiang He, MD, PhD, Professor of Nephrology and Pharmacology and Systems Therapeutics; and Avi Ma'ayan, PhD, Assistant Professor of Pharmacology and Systems Therapeutics at Mount Sinai School of Medicine, the research team studied three mouse models of kidney fibrosis: one group of mice contained HIV viral proteins incorporated into their genome; the second group was injected with a high dose of folic acid; in the third mouse model, kidney filtration was blocked in one kidney. All of these factors cause kidney fibrosis.

The researchers gathered the genetic material of the mice and compared it to the genetic material of mice that did not have kidney fibrosis. Using a new computational systems biology algorithm and software called Expression2Kinases—developed by the Ma'ayan Laboratory at Mount Sinai—the results from these experiments were analyzed. They found that HIPK2, a protein kinase, or regulator, was highly active in the mice with kidney fibrosis. HIPK2 regulates the way certain genes are expressed and when HIPK2 is highly active this leads to kidney fibrosis. Drs. He and Ma'ayan also found that when they eliminated HIPK2, fibrosis was less prominent and the condition of the mice significantly improved.

"Our findings have important implications for people with kidney diseases, patients I treat every day," said Dr. He. "Protein kinases like HIPK2 are highly effective therapeutic targets. We look forward to exploring this further."

Incorporating a systems approach allowed the Mount Sinai team to identify a target that is a regulatory protein modified during chronic disease. The high activity of HIPK2 in kidney fibrosis was not identifiable by standard methods that examine gene expression changes alone, but by modeling a network of proteins using computational systems biology, the research team was able to home in on the regulator protein, HIPK2. Now, Mount Sinai scientists can work to develop a drug intervention that inhibits the activity of HIPK2.

"This study is an important example of the translational research we are doing at Mount Sinai," said Dr. Ma'ayan. "Using algorithms and software developed here, we worked with Dr. He, who is a kidney disease physician and scientist, to better understand what causes kidney fibrosis, and we are now one step closer to finding a therapeutic solution to a complex disease that affects millions of Americans."

Funding for this study was provided by the National Institute of Diabetes and Digestive and Kidney Diseases, a division of the National Institutes of Health in Bethesda, Md.

Mount Sinai Press Office | EurekAlert!
Further information:
http://www.mssm.edu

More articles from Health and Medicine:

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

nachricht High speed video recording precisely measures blood cell velocity
15.11.2017 | ITMO University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>