Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mount Sinai researchers identify promising new drug target for kidney disease

12.03.2012
Researchers from Mount Sinai School of Medicine have identified a regulator protein that plays a crucial role in kidney fibrosis, a condition that leads to kidney failure. Finding this regulator provides a new therapeutic target for the millions of Americans affected by kidney failure. The research is published in the March 11 issue of Nature Medicine.

Led by John Cijiang He, MD, PhD, Professor of Nephrology and Pharmacology and Systems Therapeutics; and Avi Ma'ayan, PhD, Assistant Professor of Pharmacology and Systems Therapeutics at Mount Sinai School of Medicine, the research team studied three mouse models of kidney fibrosis: one group of mice contained HIV viral proteins incorporated into their genome; the second group was injected with a high dose of folic acid; in the third mouse model, kidney filtration was blocked in one kidney. All of these factors cause kidney fibrosis.

The researchers gathered the genetic material of the mice and compared it to the genetic material of mice that did not have kidney fibrosis. Using a new computational systems biology algorithm and software called Expression2Kinases—developed by the Ma'ayan Laboratory at Mount Sinai—the results from these experiments were analyzed. They found that HIPK2, a protein kinase, or regulator, was highly active in the mice with kidney fibrosis. HIPK2 regulates the way certain genes are expressed and when HIPK2 is highly active this leads to kidney fibrosis. Drs. He and Ma'ayan also found that when they eliminated HIPK2, fibrosis was less prominent and the condition of the mice significantly improved.

"Our findings have important implications for people with kidney diseases, patients I treat every day," said Dr. He. "Protein kinases like HIPK2 are highly effective therapeutic targets. We look forward to exploring this further."

Incorporating a systems approach allowed the Mount Sinai team to identify a target that is a regulatory protein modified during chronic disease. The high activity of HIPK2 in kidney fibrosis was not identifiable by standard methods that examine gene expression changes alone, but by modeling a network of proteins using computational systems biology, the research team was able to home in on the regulator protein, HIPK2. Now, Mount Sinai scientists can work to develop a drug intervention that inhibits the activity of HIPK2.

"This study is an important example of the translational research we are doing at Mount Sinai," said Dr. Ma'ayan. "Using algorithms and software developed here, we worked with Dr. He, who is a kidney disease physician and scientist, to better understand what causes kidney fibrosis, and we are now one step closer to finding a therapeutic solution to a complex disease that affects millions of Americans."

Funding for this study was provided by the National Institute of Diabetes and Digestive and Kidney Diseases, a division of the National Institutes of Health in Bethesda, Md.

Mount Sinai Press Office | EurekAlert!
Further information:
http://www.mssm.edu

More articles from Health and Medicine:

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>