Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mount Sinai researchers identify promising new drug target for kidney disease

12.03.2012
Researchers from Mount Sinai School of Medicine have identified a regulator protein that plays a crucial role in kidney fibrosis, a condition that leads to kidney failure. Finding this regulator provides a new therapeutic target for the millions of Americans affected by kidney failure. The research is published in the March 11 issue of Nature Medicine.

Led by John Cijiang He, MD, PhD, Professor of Nephrology and Pharmacology and Systems Therapeutics; and Avi Ma'ayan, PhD, Assistant Professor of Pharmacology and Systems Therapeutics at Mount Sinai School of Medicine, the research team studied three mouse models of kidney fibrosis: one group of mice contained HIV viral proteins incorporated into their genome; the second group was injected with a high dose of folic acid; in the third mouse model, kidney filtration was blocked in one kidney. All of these factors cause kidney fibrosis.

The researchers gathered the genetic material of the mice and compared it to the genetic material of mice that did not have kidney fibrosis. Using a new computational systems biology algorithm and software called Expression2Kinases—developed by the Ma'ayan Laboratory at Mount Sinai—the results from these experiments were analyzed. They found that HIPK2, a protein kinase, or regulator, was highly active in the mice with kidney fibrosis. HIPK2 regulates the way certain genes are expressed and when HIPK2 is highly active this leads to kidney fibrosis. Drs. He and Ma'ayan also found that when they eliminated HIPK2, fibrosis was less prominent and the condition of the mice significantly improved.

"Our findings have important implications for people with kidney diseases, patients I treat every day," said Dr. He. "Protein kinases like HIPK2 are highly effective therapeutic targets. We look forward to exploring this further."

Incorporating a systems approach allowed the Mount Sinai team to identify a target that is a regulatory protein modified during chronic disease. The high activity of HIPK2 in kidney fibrosis was not identifiable by standard methods that examine gene expression changes alone, but by modeling a network of proteins using computational systems biology, the research team was able to home in on the regulator protein, HIPK2. Now, Mount Sinai scientists can work to develop a drug intervention that inhibits the activity of HIPK2.

"This study is an important example of the translational research we are doing at Mount Sinai," said Dr. Ma'ayan. "Using algorithms and software developed here, we worked with Dr. He, who is a kidney disease physician and scientist, to better understand what causes kidney fibrosis, and we are now one step closer to finding a therapeutic solution to a complex disease that affects millions of Americans."

Funding for this study was provided by the National Institute of Diabetes and Digestive and Kidney Diseases, a division of the National Institutes of Health in Bethesda, Md.

Mount Sinai Press Office | EurekAlert!
Further information:
http://www.mssm.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>