Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mount Sinai researchers approaching universal treatment for all strains of influenza

04.06.2010
Researchers at Mount Sinai School of Medicine have discovered a novel component of the influenza virus that may be the key to disabling the virus's ability to replicate itself and to developing a universal anti-viral treatment. The findings were published June 1 online in Proceedings of the National Academy of Sciences.

The influenza A virus is encoded by eight individual single-stranded segments of RNA. Each segment must serve as the material for both making protein and new segments, processes called transcription and replication. As each strand must perform both functions, it is imperative that the virus prioritize these processes, starting with transcription and then switching to replication.

Mount Sinai researchers have, for the first time, identified a small-viral RNA (svRNA), derived from the virus, that is integral to the switch from transcription to replication. Inhibiting svRNA from making this switch would stymie replication and thus slow or halt the spread of the virus. Because segment ends and replication strategies used for influenza B and C are similar to those of influenza A, this discovery can lead to a universal treatment for people suffering from the disease. It would also be effective against the H1N1 swine flu virus.

"The implications of this study are very exciting," said Benjamin tenOever, PhD, Assistant Professor of Microbiology at Mount Sinai School of Medicine and corresponding author of the study. "While each segment encodes different viral products, the svRNAs remain consistent, both between segments and across viral strains. If we can block the availability of svRNA we can inhibit the switch to replication, thereby stopping viral spread. As an added bonus, if the virus remains stuck in transcription, it will continue to produce proteins, ultimately strengthening the antibody response."

The small RNA component was originally identified through a process called deep sequencing. This revolutionary new technique allows scientists to obtain millions of small RNAs from cells in a completely unbiased fashion. The technique was applied to lung cells infected with influenza A virus and ultimately led to the discovery of the first small RNA component ever identified from this family of viruses.

"Questions remain about exactly how the svRNAs function," said Dr. tenOever. "We're also hoping to engineer a means of delivering RNA-based antagonists into the body's system as a means of inhibiting svRNA function. We're still a few years off from solving the entire puzzle. However, by finding this one piece, a universal treatment for all strains of influenza is within reach of becoming a reality."

About The Mount Sinai Medical Center

The Mount Sinai Medical Center encompasses both The Mount Sinai Hospital and Mount Sinai School of Medicine. Established in 1968, Mount Sinai School of Medicine is one of few medical schools embedded in a hospital in the United States. It has more than 3,400 faculty in 32 departments and 15 institutes, and ranks among the top 20 medical schools both in National Institute of Health funding and by U.S. News & World Report. The school received the 2009 Spencer Foreman Award for Outstanding Community Service from the Association of American Medical Colleges.

The Mount Sinai Hospital, founded in 1852, is a 1,171-bed tertiary- and quaternary-care teaching facility and one of the nation's oldest, largest and most-respected voluntary hospitals. In 2009, U.S. News & World Report ranked The Mount Sinai Hospital among the nation's top 20 hospitals based on reputation, patient safety, and other patient-care factors. Nearly 60,000 people were treated at Mount Sinai as inpatients last year, and approximately 530,000 outpatient visits took place.

Mount Sinai Press Office | EurekAlert!
Further information:
http://www.mountsinai.org

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>