Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mount Sinai identifies first drug to demonstrate therapeutic effect in a type of autism

21.05.2010
Researchers from Mount Sinai School of Medicine have identified a drug that improves communication between nerve cells in a mouse model of Phelan-McDermid Syndrome (PMS). Behavioral symptoms of PMS fall under the autism spectrum disorder category. The research will be presented Friday at the International Meeting for Autism Research (IMFAR) in Philadelphia.

Previous research has shown that a gene mutation in the brain called SHANK3 can cause absent or severely delayed language abilities, intellectual disability, and autism. Mount Sinai researchers developed mice with a mutant SHANK3 gene and observed a lapse in communication between nerve cells in the brain, which can lead to learning problems. This communication breakdown indicated that the nerve cells were not maturing properly.

The researchers then injected the mice with a derivative of a compound called insulin-like growth factor-1 (IGF1), which is FDA-approved to treat growth failure in children. After two weeks of treatment, nerve cell communication was normal and adaptation of nerve cells to stimulation, a key part of learning and memory, was restored.

"The result of IGF1 treatment of these mice is an exciting development on the road to ultimate therapies for individuals with PMS," said Joseph Buxbaum, PhD, Director of the Seaver Autism Center for Research and Treatment at Mount Sinai School of Medicine. "If these data are further verified in additional preclinical studies, individuals with a SHANK3 mutation may benefit from treatments with compounds like this one."

Dr. Buxbaum and his team at the Seaver Autism Center will continue to evaluate the efficacy of IGF1 in mice. Patrick Hof, MD, Professor of Neuroscience at Mount Sinai School of Medicine, will specifically evaluate the effects of the compound on neuroanatomical changes. Additionally, Jacqueline Crawley, PhD, Senior Investigator at the National Institutes of Health, will study the effects on behavioral changes in the mice.

The study was supported by grants from the Seaver Foundation to Dr. Buxbaum, from the Simons Foundation to Drs. Buxbaum, Crawley, Hof, and Zhou, and from William G. Gibson and Paulina Rychenkova, PhD, to Dr. Buxbaum.

About The Mount Sinai Medical Center

The Mount Sinai Medical Center encompasses both The Mount Sinai Hospital and Mount Sinai School of Medicine. Established in 1968, Mount Sinai School of Medicine is one of few medical schools embedded in a hospital in the United States. It has more than 3,400 faculty in 32 departments and 15 institutes, and ranks among the top 20 medical schools both in National Institute of Health funding and by U.S. News & World Report. The school received the 2009 Spencer Foreman Award for Outstanding Community Service from the Association of American Medical Colleges.

The Mount Sinai Hospital, founded in 1852, is a 1,171-bed tertiary- and quaternary-care teaching facility and one of the nation's oldest, largest and most-respected voluntary hospitals. In 2009, U.S. News & World Report ranked The Mount Sinai Hospital among the nation's top 20 hospitals based on reputation, patient safety, and other patient-care factors. Nearly 60,000 people were treated at Mount Sinai as inpatients last year, and approximately 530,000 outpatient visits took place.

Mount Sinai Press Office | EurekAlert!
Further information:
http://www.mountsinai.org

Further reports about: Autism IGF1 Medical Wellness PMS SHANK3 health services nerve cell

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>