Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mount Sinai identifies first drug to demonstrate therapeutic effect in a type of autism

21.05.2010
Researchers from Mount Sinai School of Medicine have identified a drug that improves communication between nerve cells in a mouse model of Phelan-McDermid Syndrome (PMS). Behavioral symptoms of PMS fall under the autism spectrum disorder category. The research will be presented Friday at the International Meeting for Autism Research (IMFAR) in Philadelphia.

Previous research has shown that a gene mutation in the brain called SHANK3 can cause absent or severely delayed language abilities, intellectual disability, and autism. Mount Sinai researchers developed mice with a mutant SHANK3 gene and observed a lapse in communication between nerve cells in the brain, which can lead to learning problems. This communication breakdown indicated that the nerve cells were not maturing properly.

The researchers then injected the mice with a derivative of a compound called insulin-like growth factor-1 (IGF1), which is FDA-approved to treat growth failure in children. After two weeks of treatment, nerve cell communication was normal and adaptation of nerve cells to stimulation, a key part of learning and memory, was restored.

"The result of IGF1 treatment of these mice is an exciting development on the road to ultimate therapies for individuals with PMS," said Joseph Buxbaum, PhD, Director of the Seaver Autism Center for Research and Treatment at Mount Sinai School of Medicine. "If these data are further verified in additional preclinical studies, individuals with a SHANK3 mutation may benefit from treatments with compounds like this one."

Dr. Buxbaum and his team at the Seaver Autism Center will continue to evaluate the efficacy of IGF1 in mice. Patrick Hof, MD, Professor of Neuroscience at Mount Sinai School of Medicine, will specifically evaluate the effects of the compound on neuroanatomical changes. Additionally, Jacqueline Crawley, PhD, Senior Investigator at the National Institutes of Health, will study the effects on behavioral changes in the mice.

The study was supported by grants from the Seaver Foundation to Dr. Buxbaum, from the Simons Foundation to Drs. Buxbaum, Crawley, Hof, and Zhou, and from William G. Gibson and Paulina Rychenkova, PhD, to Dr. Buxbaum.

About The Mount Sinai Medical Center

The Mount Sinai Medical Center encompasses both The Mount Sinai Hospital and Mount Sinai School of Medicine. Established in 1968, Mount Sinai School of Medicine is one of few medical schools embedded in a hospital in the United States. It has more than 3,400 faculty in 32 departments and 15 institutes, and ranks among the top 20 medical schools both in National Institute of Health funding and by U.S. News & World Report. The school received the 2009 Spencer Foreman Award for Outstanding Community Service from the Association of American Medical Colleges.

The Mount Sinai Hospital, founded in 1852, is a 1,171-bed tertiary- and quaternary-care teaching facility and one of the nation's oldest, largest and most-respected voluntary hospitals. In 2009, U.S. News & World Report ranked The Mount Sinai Hospital among the nation's top 20 hospitals based on reputation, patient safety, and other patient-care factors. Nearly 60,000 people were treated at Mount Sinai as inpatients last year, and approximately 530,000 outpatient visits took place.

Mount Sinai Press Office | EurekAlert!
Further information:
http://www.mountsinai.org

Further reports about: Autism IGF1 Medical Wellness PMS SHANK3 health services nerve cell

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>