Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mosquitoes reared in cooler temperatures more susceptible to viruses that can affect human health

04.06.2013
Study shows weather may influence transmission of West Nile, other threats

Urban epidemics resulting from viral diseases, such as West Nile fever and chikungunya fever, are transmitted by infected mosquitoes.


This image shows green fluorescent protein in the eyes of the mosquito Aedes aegypti when immunocompromised by cooler temperatures (left) compared with an immunocompetent sibling (right).

Credit: Virginia Tech

According to Virginia Tech scientists, mosquitoes reared in cooler temperatures have weaker immune systems, making them more susceptible to dangerous viruses and more likely to transmit them to people.

The connection between temperature and the mosquito's immune system, published Friday (May 31, 2013) in PLOS Neglected Tropical Diseases, is significant in light of global climate change, said researchers Kevin Myles and Zach Adelman, associate professors of entomology in the College of Agriculture and Life Sciences, and affiliates of the Fralin Life Science Institute.

"Our data offers a plausible hypothesis for how changes in weather influence the transmission of these diseases and will likely continue to do so in the future," Myles said.

A variety of weather anomalies may occur with global changes in climate. However, predicting what these weather anomalies will be is difficult due to the enormous complexity involved. Nevertheless, the work of Myles and Adelman suggest that it would be unwise to focus solely on warmer temperatures when considering links between climate change and disease transmission.

"Mosquitoes like to breed and lay their eggs in dark, cool places because that means the water will last longer," Adelman said. "They don't lay their eggs in sunny spots because that will dry the water out in a day or two. Although this has been known of some time, we are just learning about its potential affects on the mosquito immune response. Hopefully, this information can be used to build better models that more correctly predict when we'll have disease transmission."

Current computational outbreak models consider such things as meteorological variables and human population indexes but have failed to consider the effect of temperature on mosquito immunity, he added. Specifically, Adelman and Myles found that the mosquito's RNA interference pathway is impaired when reared at cooler temperatures.

The rate of transmission of both diseases has increased with outbreaks occurring in unexpected places, such as the introductions of West Nile virus to New York in 1999, and chikungunya virus to Italy and France in 2007 and 2010.

Co-authors of the paper include Michelle A.E. Anderson, a research technician in the department of entomology and the College of Agriculture and Life Sciences; Michael R. Wiley, a Ph.D. student in the department of entomology and the College of Agriculture and Life Sciences; Marta G. Murreddu and Glady Hazitha Samuel, both post-doctoral research associates in the department of entomology and the College of Agriculture and Life Sciences; and Elaine M. Morazzani, a Ph.D. student in the department of entomology and the College of Agriculture and Life Sciences.

Lindsay Taylor Key | EurekAlert!
Further information:
http://www.vt.edu

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>