Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Morphine blocks tumor growth

28.07.2010
Current research suggests that taking morphine can block new blood vessel and tumor growth. The related report by Koodie et al, "Morphine suppresses tumor angiogenesis through a HIF1á/p38MAPK pathway," appears in the August 2010 issue of the American Journal of Pathology.

Morphine is currently the gold standard of analgesics used to relieve severe pain and suffering. Angiogenesis, or new blood vessel growth, is critical for tumor progression from dormant to malignant. Morphine is commonly used to treat cancer pain, but the effects of morphine use on new blood vessel and tumor growth remain controversial.

Using a clinically relevant morphine dose in a mouse model of Lewis lung carcinoma, researchers led by Dr. Sabita Roy of the University of Minnesota Medical School in Minneapolis, MN examined the effect of morphine use on new blood vessel growth in tumors. They found that chronic morphine use decreased levels of tumor angiogenesis in a manner dependent on the opioid receptor. This effect was mediated by suppression of signaling induced by low oxygen concentrations, leading to a reduction in the levels of pro-angiogenic factors. Therefore, morphine may not only serve as an analgesic for cancer patients, but may also inhibit tumor angiogenesis and growth.

Koodie et al conclude that "morphine is a potential inhibitor of tumor growth, through the suppression of tumor cell-induced angiogenesis and hypoxia-induced p38 MAPK activation of HIF-1. In addition to its analgesic potential, morphine can be exploited for its anti-angiogenic potential in cancer pain management; these findings support the use of morphine for cancer pain management."

This work was supported by the National Institutes of Health (NIDA/NIH, F31-DA021005-01 to LK; CA114340 to SR; and NIDA/NIH grants RO1 DA 12104; RO1 DA 022935; KO2 DA 015349; P50 DA 011806 to SR).

Koodie L, Ramakrishnan S, Roy S: Morphine suppresses tumor angiogenesis through a HIF1á/p38MAPK pathway. Am J Pathol 2010, 177: 984-997

For more information on Dr Sabita Roy, please contact her at the University of Minnesota Medical School, Department of Surgery, MMC 195, 420 Delaware Street, SE, Minneapolis, MN 55455. E-mail: royxx002@umn.edu.

For press copies of the articles, please contact Dr. Angela Colmone at 301-634-7953 or acolmone@asip.org.

The American Journal of Pathology, official journal of the American Society for Investigative Pathology, seeks to publish high-quality, original papers on the cellular and molecular biology of disease. The editors accept manuscripts that advance basic and translational knowledge of the pathogenesis, classification, diagnosis, and mechanisms of disease, without preference for a specific analytic method. High priority is given to studies on human disease and relevant experimental models using cellular, molecular, animal, biological, chemical, and immunological approaches in conjunction with morphology.

Angela Colmone, Ph.D. | EurekAlert!
Further information:
http://www.asip.org

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>