Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Morphine blocks tumor growth

28.07.2010
Current research suggests that taking morphine can block new blood vessel and tumor growth. The related report by Koodie et al, "Morphine suppresses tumor angiogenesis through a HIF1á/p38MAPK pathway," appears in the August 2010 issue of the American Journal of Pathology.

Morphine is currently the gold standard of analgesics used to relieve severe pain and suffering. Angiogenesis, or new blood vessel growth, is critical for tumor progression from dormant to malignant. Morphine is commonly used to treat cancer pain, but the effects of morphine use on new blood vessel and tumor growth remain controversial.

Using a clinically relevant morphine dose in a mouse model of Lewis lung carcinoma, researchers led by Dr. Sabita Roy of the University of Minnesota Medical School in Minneapolis, MN examined the effect of morphine use on new blood vessel growth in tumors. They found that chronic morphine use decreased levels of tumor angiogenesis in a manner dependent on the opioid receptor. This effect was mediated by suppression of signaling induced by low oxygen concentrations, leading to a reduction in the levels of pro-angiogenic factors. Therefore, morphine may not only serve as an analgesic for cancer patients, but may also inhibit tumor angiogenesis and growth.

Koodie et al conclude that "morphine is a potential inhibitor of tumor growth, through the suppression of tumor cell-induced angiogenesis and hypoxia-induced p38 MAPK activation of HIF-1. In addition to its analgesic potential, morphine can be exploited for its anti-angiogenic potential in cancer pain management; these findings support the use of morphine for cancer pain management."

This work was supported by the National Institutes of Health (NIDA/NIH, F31-DA021005-01 to LK; CA114340 to SR; and NIDA/NIH grants RO1 DA 12104; RO1 DA 022935; KO2 DA 015349; P50 DA 011806 to SR).

Koodie L, Ramakrishnan S, Roy S: Morphine suppresses tumor angiogenesis through a HIF1á/p38MAPK pathway. Am J Pathol 2010, 177: 984-997

For more information on Dr Sabita Roy, please contact her at the University of Minnesota Medical School, Department of Surgery, MMC 195, 420 Delaware Street, SE, Minneapolis, MN 55455. E-mail: royxx002@umn.edu.

For press copies of the articles, please contact Dr. Angela Colmone at 301-634-7953 or acolmone@asip.org.

The American Journal of Pathology, official journal of the American Society for Investigative Pathology, seeks to publish high-quality, original papers on the cellular and molecular biology of disease. The editors accept manuscripts that advance basic and translational knowledge of the pathogenesis, classification, diagnosis, and mechanisms of disease, without preference for a specific analytic method. High priority is given to studies on human disease and relevant experimental models using cellular, molecular, animal, biological, chemical, and immunological approaches in conjunction with morphology.

Angela Colmone, Ph.D. | EurekAlert!
Further information:
http://www.asip.org

More articles from Health and Medicine:

nachricht 'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers
16.02.2018 | National University of Science and Technology MISIS

nachricht New process allows tailor-made malaria research
16.02.2018 | Eberhard Karls Universität Tübingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Japanese researchers develop ultrathin, highly elastic skin display

19.02.2018 | Information Technology

Dispersal of Fish Eggs by Water Birds – Just a Myth?

19.02.2018 | Ecology, The Environment and Conservation

Studying mitosis' structure to understand the inside of cancer cells

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>