Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Morphine blocks tumor growth

28.07.2010
Current research suggests that taking morphine can block new blood vessel and tumor growth. The related report by Koodie et al, "Morphine suppresses tumor angiogenesis through a HIF1á/p38MAPK pathway," appears in the August 2010 issue of the American Journal of Pathology.

Morphine is currently the gold standard of analgesics used to relieve severe pain and suffering. Angiogenesis, or new blood vessel growth, is critical for tumor progression from dormant to malignant. Morphine is commonly used to treat cancer pain, but the effects of morphine use on new blood vessel and tumor growth remain controversial.

Using a clinically relevant morphine dose in a mouse model of Lewis lung carcinoma, researchers led by Dr. Sabita Roy of the University of Minnesota Medical School in Minneapolis, MN examined the effect of morphine use on new blood vessel growth in tumors. They found that chronic morphine use decreased levels of tumor angiogenesis in a manner dependent on the opioid receptor. This effect was mediated by suppression of signaling induced by low oxygen concentrations, leading to a reduction in the levels of pro-angiogenic factors. Therefore, morphine may not only serve as an analgesic for cancer patients, but may also inhibit tumor angiogenesis and growth.

Koodie et al conclude that "morphine is a potential inhibitor of tumor growth, through the suppression of tumor cell-induced angiogenesis and hypoxia-induced p38 MAPK activation of HIF-1. In addition to its analgesic potential, morphine can be exploited for its anti-angiogenic potential in cancer pain management; these findings support the use of morphine for cancer pain management."

This work was supported by the National Institutes of Health (NIDA/NIH, F31-DA021005-01 to LK; CA114340 to SR; and NIDA/NIH grants RO1 DA 12104; RO1 DA 022935; KO2 DA 015349; P50 DA 011806 to SR).

Koodie L, Ramakrishnan S, Roy S: Morphine suppresses tumor angiogenesis through a HIF1á/p38MAPK pathway. Am J Pathol 2010, 177: 984-997

For more information on Dr Sabita Roy, please contact her at the University of Minnesota Medical School, Department of Surgery, MMC 195, 420 Delaware Street, SE, Minneapolis, MN 55455. E-mail: royxx002@umn.edu.

For press copies of the articles, please contact Dr. Angela Colmone at 301-634-7953 or acolmone@asip.org.

The American Journal of Pathology, official journal of the American Society for Investigative Pathology, seeks to publish high-quality, original papers on the cellular and molecular biology of disease. The editors accept manuscripts that advance basic and translational knowledge of the pathogenesis, classification, diagnosis, and mechanisms of disease, without preference for a specific analytic method. High priority is given to studies on human disease and relevant experimental models using cellular, molecular, animal, biological, chemical, and immunological approaches in conjunction with morphology.

Angela Colmone, Ph.D. | EurekAlert!
Further information:
http://www.asip.org

More articles from Health and Medicine:

nachricht MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer
25.09.2017 | Case Western Reserve University

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

25.09.2017 | Trade Fair News

Highest-energy cosmic rays have extragalactic origin

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>