Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New molecule protects the brain from detrimental effects associated with diabetes and high blood sugar

28.01.2014
Potential to lower diabetic patients’ higher risk of developing dementia or Alzheimer’s disease

Researchers at the Hebrew university of Jerusalem have created a molecule that could potentially lower diabetic patients’ higher risk of developing dementia or Alzheimer’s disease.

Recent studies indicate that high levels of sugar in the blood in diabetics and non-diabetics are a risk factor for the development of dementia, impaired cognition, and a decline of brain function. Diabetics have also been found to have twice the risk of developing Alzheimer's disease compared to non-diabetics.

Now, researchers from the Hebrew University of Jerusalem have found a potential neuro-inflammatory pathway that could be responsible for the increases of diabetics’ risk of Alzheimer's and dementia. They also reveal a potential treatment to reverse this process.

The research group led by Prof. Daphne Atlas, of the Department of Biological Chemistry in the Alexander Silberman Institute of Life Sciences at the Hebrew University, experimented with diabetic rats to examine the mechanism of action that may be responsible for changes in the brain due to high sugar levels. The researchers found that diabetic rats displayed high activity of enzymes called MAPK kinases, which are involved in facilitating cellular responses to a variety of stimuli, leading to inflammatory activity in brain cells and the early death of cells.

The study shows that the diabetic rats given a daily injection of the sugar-lowering drug rosiglitazone for a month enjoyed a significant decrease in MAPK enzyme activity accompanied by a decrease in the inflammatory processes in the brain. According to the authors, this finding represents the first unequivocal evidence of a functional link between high blood sugar and the activation of this specific inflammatory pathway in the brain.

Using the diabetic rat model, they explored a novel approach that would lower the activation of these enzymes in the brain, and decrease neuronal cell death. In the last few years, Prof. Atlas developed a series of molecules that mimic the action of thioredoxin called thioredoxin-mimetic peptides (TXM), whose role is to protect the cells from early death through activating inflammatory pathways. The TXM peptides were effective in different animal models and were able to prevent the activation of the damaging MAPK kinases. Applied to the diabetic Zucker rats, one of the molecules, TXM-CB3, significantly reduced the activity of these enzymes, and lowered the accelerated brain cell death. These results indicate that the molecule managed to cross the blood-brain barrier and improve the condition of the brain cells, through lowering the inflammatory processes in the rats’ brains, despite the high glucose levels afflicting the rats.

The Hebrew University’s Prof. Atlas said: "This study paves the way for preventive treatment of damages caused by high sugar levels, and for reducing the risk of dementia and Alzheimer's disease in diabetics or people with elevated blood sugar levels. Following the successful animal testing of the molecule we developed, we hope to explore its potential benefit for treating cognitive and memory impairments caused by diabetes on humans.”

The molecule is protected by a patent registered by Yissum Research Development Company, the technology transfer arm of the Hebrew University.

The study, “Thioredoxin-Mimetic peptide CB3 Lowers MAPKinsase activity in the Zucker Rat Brain,” appeared in the journal Redox Biology, an official Journal of the Society for Free Radical Biology and Medicine and the Society for Free Radical Research-Europe.

The research was funded in part by funded by the H.L. Lauterbach Fund, the Haya and Shlomo Margalit Fund, and a NOFAR program (issued by MAGNET directorate in the Israeli Ministry of Industry, Trade & Labor). Researchers included Dr. Michael Trus; PhD student Moshe Cohen-Kutner; MSc student Lena Khomsky; and Hila Ben-Yehuda.

For information:

Dov Smith
Hebrew University Foreign Press Liaison
02-5882844 / +972-54-8820860
dovs@savion.huji.ac.il

Dov Smith | Hebrew University
Further information:
http://www.huji.ac.il

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>