Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecule Plays Early Role In Nonsmoking Lung Cancer

29.07.2009
The cause of lung cancer in never-smokers is poorly understood, but a study led by investigators at the Ohio State University Comprehensive Cancer Center and at the National Cancer Institute has identified a molecule believed to play an early and important role in its development.

The findings, published online recently in the Proceedings of the National Academy of Sciences, may lead to improved therapy for lung cancer in both never-smokers and smokers, including those with tumors resistant to targeted drugs such as gefitinib.

The study examined lung tumors from people who had never smoked and found high levels of a molecule called miR-21. The levels were even higher in tumors that had mutations in a gene called EGFR, a common feature of lung cancer in never-smokers.

“Several important lung cancer drugs target EGFR mutations, but these agents are ineffective in about 30 percent of cases in which the mutation is present,” says co-principal investigator Dr. Carlo M. Croce, professor of molecular virology, immunology and medical genetics at the Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute. “Our study suggests that developing agents to inhibit miR-21 might improve these anti-EGFR therapies.”

About 15 percent of the 219,000 lung cancer cases expected this year in the United States – 32,850 people – will occur in individuals who have never smoked.

Croce and his colleagues began their study by comparing 28 cases of lung tumor tissue and nearby healthy lung tissue from never-smokers for changes in microRNA, molecules that help cells regulate the kind and amount of proteins they make.

The cancer cells showed abnormally elevated levels of five microRNAs, with miR-21 increased two and a third times, the highest of all. An earlier study of smoking-related lung cancer by the same investigators also showed elevated levels of that molecule.

Furthermore, the molecule was equally high in early stage tumors and late stage tumors, suggesting that this change happens early in lung cancer development, says Croce, who also directs Ohio State’s Human Cancer Genetics program.

Using lung cancer cell lines, the investigators learned that EGFR regulates miR-21. For example, altering EGFR levels caused corresponding changes in miR-21.

Last, the investigators took cells that had a mutated EGFR gene and treated them with an anti-EGFR agent (the agent was related to gefitinib and erlotinib, targeted drugs used to treat lung cancers with EGFR mutations). As expected, many of the cells died. But when they blocked both EGFR and miR-21, the proportion of cells killed rose still more.

Overall, Croce says, “Our study suggests that the combined use of an EGFR inhibitor and a miR-21 inhibitor might improve therapy for many cases of lung cancer, and rescue lung cancer cases that have acquired resistance to several targeted drugs.”

Funding from the Intramural Research Program of the National Institutes of Health, National Cancer Institute and Center for Cancer Research supported this study.

Croce holds the John W. Wolfe Chair in Human Cancer Genetics at Ohio State.

The Ohio State University Comprehensive Cancer Center-James Cancer Hospital and Solove Research Institute is one of only 40 Comprehensive Cancer Centers in the United States designated by the National Cancer Institute. Ranked by U.S. News & World Report among the top 20 cancer hospitals in the nation, The James is the 180-bed adult patient-care component of the cancer program at The Ohio State University. The OSUCCC-James is one of only five centers in the country approved by the NCI to conduct both Phase I and Phase II clinical trials.

Contact:
Darrell Ward
Medical Center Communications
614-293-3737
Darrell.Ward@osumc.edu

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

Further reports about: Cancer EGFR Human vaccine Molecule Nonsmoking cancer drug lung cancer

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>