Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecule Plays Early Role In Nonsmoking Lung Cancer

29.07.2009
The cause of lung cancer in never-smokers is poorly understood, but a study led by investigators at the Ohio State University Comprehensive Cancer Center and at the National Cancer Institute has identified a molecule believed to play an early and important role in its development.

The findings, published online recently in the Proceedings of the National Academy of Sciences, may lead to improved therapy for lung cancer in both never-smokers and smokers, including those with tumors resistant to targeted drugs such as gefitinib.

The study examined lung tumors from people who had never smoked and found high levels of a molecule called miR-21. The levels were even higher in tumors that had mutations in a gene called EGFR, a common feature of lung cancer in never-smokers.

“Several important lung cancer drugs target EGFR mutations, but these agents are ineffective in about 30 percent of cases in which the mutation is present,” says co-principal investigator Dr. Carlo M. Croce, professor of molecular virology, immunology and medical genetics at the Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute. “Our study suggests that developing agents to inhibit miR-21 might improve these anti-EGFR therapies.”

About 15 percent of the 219,000 lung cancer cases expected this year in the United States – 32,850 people – will occur in individuals who have never smoked.

Croce and his colleagues began their study by comparing 28 cases of lung tumor tissue and nearby healthy lung tissue from never-smokers for changes in microRNA, molecules that help cells regulate the kind and amount of proteins they make.

The cancer cells showed abnormally elevated levels of five microRNAs, with miR-21 increased two and a third times, the highest of all. An earlier study of smoking-related lung cancer by the same investigators also showed elevated levels of that molecule.

Furthermore, the molecule was equally high in early stage tumors and late stage tumors, suggesting that this change happens early in lung cancer development, says Croce, who also directs Ohio State’s Human Cancer Genetics program.

Using lung cancer cell lines, the investigators learned that EGFR regulates miR-21. For example, altering EGFR levels caused corresponding changes in miR-21.

Last, the investigators took cells that had a mutated EGFR gene and treated them with an anti-EGFR agent (the agent was related to gefitinib and erlotinib, targeted drugs used to treat lung cancers with EGFR mutations). As expected, many of the cells died. But when they blocked both EGFR and miR-21, the proportion of cells killed rose still more.

Overall, Croce says, “Our study suggests that the combined use of an EGFR inhibitor and a miR-21 inhibitor might improve therapy for many cases of lung cancer, and rescue lung cancer cases that have acquired resistance to several targeted drugs.”

Funding from the Intramural Research Program of the National Institutes of Health, National Cancer Institute and Center for Cancer Research supported this study.

Croce holds the John W. Wolfe Chair in Human Cancer Genetics at Ohio State.

The Ohio State University Comprehensive Cancer Center-James Cancer Hospital and Solove Research Institute is one of only 40 Comprehensive Cancer Centers in the United States designated by the National Cancer Institute. Ranked by U.S. News & World Report among the top 20 cancer hospitals in the nation, The James is the 180-bed adult patient-care component of the cancer program at The Ohio State University. The OSUCCC-James is one of only five centers in the country approved by the NCI to conduct both Phase I and Phase II clinical trials.

Contact:
Darrell Ward
Medical Center Communications
614-293-3737
Darrell.Ward@osumc.edu

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

Further reports about: Cancer EGFR Human vaccine Molecule Nonsmoking cancer drug lung cancer

More articles from Health and Medicine:

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

nachricht Vanishing capillaries
23.03.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA examines Peru's deadly rainfall

24.03.2017 | Earth Sciences

What does congenital Zika syndrome look like?

24.03.2017 | Health and Medicine

Steep rise of the Bernese Alps

24.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>