Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecule common in some cancers, rheumatoid arthritis leads to potential therapy for both

14.11.2013
A molecule that helps cells stick together is significantly over-produced in two very different diseases — rheumatoid arthritis and a variety of cancers, including breast and brain tumors, concludes a new study. The scientists who made the discovery also found candidate drugs to inhibit the molecule, cadherin-11, one of which is already in a clinical trial.

The study, published in Oncotarget, was led by investigators at Georgetown University Medical Center, and included collaborators from Harvard and Columbia Universities, Mayo Clinic and Queen's University in Belfast, Northern Ireland.

"Our findings suggest that cadherin-11 is important for cancer progression as well as rheumatoid arthritis — for reasons we do not fully understand. Nevertheless, we are rapidly translating this discovery for use in the clinic," says the study's senior investigator, Stephen Byers, PhD, a professor and molecular oncologist at Georgetown Lombardi Comprehensive Cancer Center.

Byers and his Georgetown colleagues, Shahin Assefnia DVM, Siva Dakshanurthy PhD, and Jaime Guidry Auvil, PhD, have found that cadherin-11 is over-expressed in 15 percent of breast cancers, and in many glioblastomas. He believes the molecule also contributes to pancreatic cancer.

"What most of these cancers all have in common is cadherin-11 and a poor prognosis, with no effective therapies," Byers says. "Cadherin-11 expression is required for tumors to grow. If it is blocked, the cancers in cell line studies and in animals just stop growing — which is really quite striking."

The Georgetown team has developed a small molecule agent to shut down cadherin-11 in cancer, and, by screening drugs now on the market, found that the well known arthritis drug Celebrex acts in a similar way. While it is unlikely that Celebrex could be used as a single agent against cancer because it would be too toxic at the level needed to impair cadherin-11, a Celebrex-related molecule works the same way, and may potentially be less toxic.

Co-author Michael Brenner, MD, at Harvard University, has designed an antibody that can shut down cadherin-11 in rheumatoid arthritis. The Oncotarget study demonstrated that Brenner's antibody worked in animal models of tumors that made cadherin-11.

It was chance that he and Brenner were working on the same molecule at the same time and came to know of each other's work. Coincidentally, co-author Lawrence Shapiro, PhD, at Columbia, was building a crystal structure of cadherin-11 and is now working with Byers and Brenner to show how the molecule binds to Celebrex and other small molecule drug cadherin-11 inhibitors.

This close collaboration led Byers, Brenner and Shapiro to apply for a grant last year from the National Cancer Institute's Provocative Questions project. They proposed answering the question related to the connection between drugs, such as anti-inflammatory agents, that can protect against cancer and other conditions.

The trio won the $2.5 million grant (R01 CA170653) for that question — and some of the findings fueled by that grant are included in this study.

This research also was funded by awards from the Department of Defense's Breast Cancer Research Program (W81XWH-10-1-0437 and DOD BC62416).

Byers, Dakshanamurthy, Auvil and co-author Milton Brown, MD, PhD are inventors on patent applications that have been filed by Georgetown University on technologies that are related to this project. Brenner is founder of Adheron Therapeutics, which has developed best in class cadherin-11 antibodies for therapeutic use in rheumatoid arthritis and cancer.

About Georgetown Lombardi Comprehensive Cancer Center

Georgetown Lombardi Comprehensive Cancer Center, part of Georgetown University Medical Center and MedStar Georgetown University Hospital, seeks to improve the diagnosis, treatment, and prevention of cancer through innovative basic and clinical research, patient care, community education and outreach, and the training of cancer specialists of the future. Georgetown Lombardi is one of only 41 comprehensive cancer centers in the nation, as designated by the National Cancer Institute (grant #P30 CA051008), and the only one in the Washington, DC area. For more information, go to http://lombardi.georgetown.edu.

About Georgetown University Medical Center

Georgetown University Medical Center is an internationally recognized academic medical center with a three-part mission of research, teaching and patient care (through MedStar Health). GUMC's mission is carried out with a strong emphasis on public service and a dedication to the Catholic, Jesuit principle of cura personalis – or "care of the whole person." The Medical Center includes the School of Medicine and the School of Nursing & Health Studies, both nationally ranked; Georgetown Lombardi Comprehensive Cancer Center, designated as a comprehensive cancer center by the National Cancer Institute; and the Biomedical Graduate Research Organization (BGRO), which accounts for the majority of externally funded research at GUMC including a Clinical and Translational Science Award from the National Institutes of Health.

Karen Mallet | EurekAlert!
Further information:
http://www.georgetown.edu

More articles from Health and Medicine:

nachricht Cystic fibrosis alters the structure of mucus in airways
28.06.2017 | University of Iowa Health Care

nachricht Mice provide insight into genetics of autism spectrum disorders
28.06.2017 | University of California - Davis

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

High conductive foils enabling large area lighting

29.06.2017 | Power and Electrical Engineering

Designed proteins to treat muscular dystrophy

29.06.2017 | Life Sciences

Climate Fluctuations & Non-equilibrium Statistical Mechanics: An Interdisciplinary Dialog

29.06.2017 | Seminars Workshops

VideoLinks
B2B-VideoLinks
More VideoLinks >>>