Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecule common in some cancers, rheumatoid arthritis leads to potential therapy for both

14.11.2013
A molecule that helps cells stick together is significantly over-produced in two very different diseases — rheumatoid arthritis and a variety of cancers, including breast and brain tumors, concludes a new study. The scientists who made the discovery also found candidate drugs to inhibit the molecule, cadherin-11, one of which is already in a clinical trial.

The study, published in Oncotarget, was led by investigators at Georgetown University Medical Center, and included collaborators from Harvard and Columbia Universities, Mayo Clinic and Queen's University in Belfast, Northern Ireland.

"Our findings suggest that cadherin-11 is important for cancer progression as well as rheumatoid arthritis — for reasons we do not fully understand. Nevertheless, we are rapidly translating this discovery for use in the clinic," says the study's senior investigator, Stephen Byers, PhD, a professor and molecular oncologist at Georgetown Lombardi Comprehensive Cancer Center.

Byers and his Georgetown colleagues, Shahin Assefnia DVM, Siva Dakshanurthy PhD, and Jaime Guidry Auvil, PhD, have found that cadherin-11 is over-expressed in 15 percent of breast cancers, and in many glioblastomas. He believes the molecule also contributes to pancreatic cancer.

"What most of these cancers all have in common is cadherin-11 and a poor prognosis, with no effective therapies," Byers says. "Cadherin-11 expression is required for tumors to grow. If it is blocked, the cancers in cell line studies and in animals just stop growing — which is really quite striking."

The Georgetown team has developed a small molecule agent to shut down cadherin-11 in cancer, and, by screening drugs now on the market, found that the well known arthritis drug Celebrex acts in a similar way. While it is unlikely that Celebrex could be used as a single agent against cancer because it would be too toxic at the level needed to impair cadherin-11, a Celebrex-related molecule works the same way, and may potentially be less toxic.

Co-author Michael Brenner, MD, at Harvard University, has designed an antibody that can shut down cadherin-11 in rheumatoid arthritis. The Oncotarget study demonstrated that Brenner's antibody worked in animal models of tumors that made cadherin-11.

It was chance that he and Brenner were working on the same molecule at the same time and came to know of each other's work. Coincidentally, co-author Lawrence Shapiro, PhD, at Columbia, was building a crystal structure of cadherin-11 and is now working with Byers and Brenner to show how the molecule binds to Celebrex and other small molecule drug cadherin-11 inhibitors.

This close collaboration led Byers, Brenner and Shapiro to apply for a grant last year from the National Cancer Institute's Provocative Questions project. They proposed answering the question related to the connection between drugs, such as anti-inflammatory agents, that can protect against cancer and other conditions.

The trio won the $2.5 million grant (R01 CA170653) for that question — and some of the findings fueled by that grant are included in this study.

This research also was funded by awards from the Department of Defense's Breast Cancer Research Program (W81XWH-10-1-0437 and DOD BC62416).

Byers, Dakshanamurthy, Auvil and co-author Milton Brown, MD, PhD are inventors on patent applications that have been filed by Georgetown University on technologies that are related to this project. Brenner is founder of Adheron Therapeutics, which has developed best in class cadherin-11 antibodies for therapeutic use in rheumatoid arthritis and cancer.

About Georgetown Lombardi Comprehensive Cancer Center

Georgetown Lombardi Comprehensive Cancer Center, part of Georgetown University Medical Center and MedStar Georgetown University Hospital, seeks to improve the diagnosis, treatment, and prevention of cancer through innovative basic and clinical research, patient care, community education and outreach, and the training of cancer specialists of the future. Georgetown Lombardi is one of only 41 comprehensive cancer centers in the nation, as designated by the National Cancer Institute (grant #P30 CA051008), and the only one in the Washington, DC area. For more information, go to http://lombardi.georgetown.edu.

About Georgetown University Medical Center

Georgetown University Medical Center is an internationally recognized academic medical center with a three-part mission of research, teaching and patient care (through MedStar Health). GUMC's mission is carried out with a strong emphasis on public service and a dedication to the Catholic, Jesuit principle of cura personalis – or "care of the whole person." The Medical Center includes the School of Medicine and the School of Nursing & Health Studies, both nationally ranked; Georgetown Lombardi Comprehensive Cancer Center, designated as a comprehensive cancer center by the National Cancer Institute; and the Biomedical Graduate Research Organization (BGRO), which accounts for the majority of externally funded research at GUMC including a Clinical and Translational Science Award from the National Institutes of Health.

Karen Mallet | EurekAlert!
Further information:
http://www.georgetown.edu

More articles from Health and Medicine:

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

nachricht How to turn white fat brown
07.12.2016 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>