Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecule common in some cancers, rheumatoid arthritis leads to potential therapy for both

14.11.2013
A molecule that helps cells stick together is significantly over-produced in two very different diseases — rheumatoid arthritis and a variety of cancers, including breast and brain tumors, concludes a new study. The scientists who made the discovery also found candidate drugs to inhibit the molecule, cadherin-11, one of which is already in a clinical trial.

The study, published in Oncotarget, was led by investigators at Georgetown University Medical Center, and included collaborators from Harvard and Columbia Universities, Mayo Clinic and Queen's University in Belfast, Northern Ireland.

"Our findings suggest that cadherin-11 is important for cancer progression as well as rheumatoid arthritis — for reasons we do not fully understand. Nevertheless, we are rapidly translating this discovery for use in the clinic," says the study's senior investigator, Stephen Byers, PhD, a professor and molecular oncologist at Georgetown Lombardi Comprehensive Cancer Center.

Byers and his Georgetown colleagues, Shahin Assefnia DVM, Siva Dakshanurthy PhD, and Jaime Guidry Auvil, PhD, have found that cadherin-11 is over-expressed in 15 percent of breast cancers, and in many glioblastomas. He believes the molecule also contributes to pancreatic cancer.

"What most of these cancers all have in common is cadherin-11 and a poor prognosis, with no effective therapies," Byers says. "Cadherin-11 expression is required for tumors to grow. If it is blocked, the cancers in cell line studies and in animals just stop growing — which is really quite striking."

The Georgetown team has developed a small molecule agent to shut down cadherin-11 in cancer, and, by screening drugs now on the market, found that the well known arthritis drug Celebrex acts in a similar way. While it is unlikely that Celebrex could be used as a single agent against cancer because it would be too toxic at the level needed to impair cadherin-11, a Celebrex-related molecule works the same way, and may potentially be less toxic.

Co-author Michael Brenner, MD, at Harvard University, has designed an antibody that can shut down cadherin-11 in rheumatoid arthritis. The Oncotarget study demonstrated that Brenner's antibody worked in animal models of tumors that made cadherin-11.

It was chance that he and Brenner were working on the same molecule at the same time and came to know of each other's work. Coincidentally, co-author Lawrence Shapiro, PhD, at Columbia, was building a crystal structure of cadherin-11 and is now working with Byers and Brenner to show how the molecule binds to Celebrex and other small molecule drug cadherin-11 inhibitors.

This close collaboration led Byers, Brenner and Shapiro to apply for a grant last year from the National Cancer Institute's Provocative Questions project. They proposed answering the question related to the connection between drugs, such as anti-inflammatory agents, that can protect against cancer and other conditions.

The trio won the $2.5 million grant (R01 CA170653) for that question — and some of the findings fueled by that grant are included in this study.

This research also was funded by awards from the Department of Defense's Breast Cancer Research Program (W81XWH-10-1-0437 and DOD BC62416).

Byers, Dakshanamurthy, Auvil and co-author Milton Brown, MD, PhD are inventors on patent applications that have been filed by Georgetown University on technologies that are related to this project. Brenner is founder of Adheron Therapeutics, which has developed best in class cadherin-11 antibodies for therapeutic use in rheumatoid arthritis and cancer.

About Georgetown Lombardi Comprehensive Cancer Center

Georgetown Lombardi Comprehensive Cancer Center, part of Georgetown University Medical Center and MedStar Georgetown University Hospital, seeks to improve the diagnosis, treatment, and prevention of cancer through innovative basic and clinical research, patient care, community education and outreach, and the training of cancer specialists of the future. Georgetown Lombardi is one of only 41 comprehensive cancer centers in the nation, as designated by the National Cancer Institute (grant #P30 CA051008), and the only one in the Washington, DC area. For more information, go to http://lombardi.georgetown.edu.

About Georgetown University Medical Center

Georgetown University Medical Center is an internationally recognized academic medical center with a three-part mission of research, teaching and patient care (through MedStar Health). GUMC's mission is carried out with a strong emphasis on public service and a dedication to the Catholic, Jesuit principle of cura personalis – or "care of the whole person." The Medical Center includes the School of Medicine and the School of Nursing & Health Studies, both nationally ranked; Georgetown Lombardi Comprehensive Cancer Center, designated as a comprehensive cancer center by the National Cancer Institute; and the Biomedical Graduate Research Organization (BGRO), which accounts for the majority of externally funded research at GUMC including a Clinical and Translational Science Award from the National Institutes of Health.

Karen Mallet | EurekAlert!
Further information:
http://www.georgetown.edu

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>