Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecule common in some cancers, rheumatoid arthritis leads to potential therapy for both

14.11.2013
A molecule that helps cells stick together is significantly over-produced in two very different diseases — rheumatoid arthritis and a variety of cancers, including breast and brain tumors, concludes a new study. The scientists who made the discovery also found candidate drugs to inhibit the molecule, cadherin-11, one of which is already in a clinical trial.

The study, published in Oncotarget, was led by investigators at Georgetown University Medical Center, and included collaborators from Harvard and Columbia Universities, Mayo Clinic and Queen's University in Belfast, Northern Ireland.

"Our findings suggest that cadherin-11 is important for cancer progression as well as rheumatoid arthritis — for reasons we do not fully understand. Nevertheless, we are rapidly translating this discovery for use in the clinic," says the study's senior investigator, Stephen Byers, PhD, a professor and molecular oncologist at Georgetown Lombardi Comprehensive Cancer Center.

Byers and his Georgetown colleagues, Shahin Assefnia DVM, Siva Dakshanurthy PhD, and Jaime Guidry Auvil, PhD, have found that cadherin-11 is over-expressed in 15 percent of breast cancers, and in many glioblastomas. He believes the molecule also contributes to pancreatic cancer.

"What most of these cancers all have in common is cadherin-11 and a poor prognosis, with no effective therapies," Byers says. "Cadherin-11 expression is required for tumors to grow. If it is blocked, the cancers in cell line studies and in animals just stop growing — which is really quite striking."

The Georgetown team has developed a small molecule agent to shut down cadherin-11 in cancer, and, by screening drugs now on the market, found that the well known arthritis drug Celebrex acts in a similar way. While it is unlikely that Celebrex could be used as a single agent against cancer because it would be too toxic at the level needed to impair cadherin-11, a Celebrex-related molecule works the same way, and may potentially be less toxic.

Co-author Michael Brenner, MD, at Harvard University, has designed an antibody that can shut down cadherin-11 in rheumatoid arthritis. The Oncotarget study demonstrated that Brenner's antibody worked in animal models of tumors that made cadherin-11.

It was chance that he and Brenner were working on the same molecule at the same time and came to know of each other's work. Coincidentally, co-author Lawrence Shapiro, PhD, at Columbia, was building a crystal structure of cadherin-11 and is now working with Byers and Brenner to show how the molecule binds to Celebrex and other small molecule drug cadherin-11 inhibitors.

This close collaboration led Byers, Brenner and Shapiro to apply for a grant last year from the National Cancer Institute's Provocative Questions project. They proposed answering the question related to the connection between drugs, such as anti-inflammatory agents, that can protect against cancer and other conditions.

The trio won the $2.5 million grant (R01 CA170653) for that question — and some of the findings fueled by that grant are included in this study.

This research also was funded by awards from the Department of Defense's Breast Cancer Research Program (W81XWH-10-1-0437 and DOD BC62416).

Byers, Dakshanamurthy, Auvil and co-author Milton Brown, MD, PhD are inventors on patent applications that have been filed by Georgetown University on technologies that are related to this project. Brenner is founder of Adheron Therapeutics, which has developed best in class cadherin-11 antibodies for therapeutic use in rheumatoid arthritis and cancer.

About Georgetown Lombardi Comprehensive Cancer Center

Georgetown Lombardi Comprehensive Cancer Center, part of Georgetown University Medical Center and MedStar Georgetown University Hospital, seeks to improve the diagnosis, treatment, and prevention of cancer through innovative basic and clinical research, patient care, community education and outreach, and the training of cancer specialists of the future. Georgetown Lombardi is one of only 41 comprehensive cancer centers in the nation, as designated by the National Cancer Institute (grant #P30 CA051008), and the only one in the Washington, DC area. For more information, go to http://lombardi.georgetown.edu.

About Georgetown University Medical Center

Georgetown University Medical Center is an internationally recognized academic medical center with a three-part mission of research, teaching and patient care (through MedStar Health). GUMC's mission is carried out with a strong emphasis on public service and a dedication to the Catholic, Jesuit principle of cura personalis – or "care of the whole person." The Medical Center includes the School of Medicine and the School of Nursing & Health Studies, both nationally ranked; Georgetown Lombardi Comprehensive Cancer Center, designated as a comprehensive cancer center by the National Cancer Institute; and the Biomedical Graduate Research Organization (BGRO), which accounts for the majority of externally funded research at GUMC including a Clinical and Translational Science Award from the National Institutes of Health.

Karen Mallet | EurekAlert!
Further information:
http://www.georgetown.edu

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>