Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moffitt Cancer Center Study Validates Activity of Rare Genetic Variant in Glioma

03.07.2012
High risk and better outcome for glioma wrapped up in rare gene variant
Researchers at Moffitt Cancer Center working with colleagues at three other institutions have validated a link between a rare genetic variant and the risk of glioma, the most common and lethal type of brain tumor. The validation study also uncovered an association between the same rare genetic variant and improved rates of survival for patients with glioma.

The study, the first to confirm a rare susceptibility variant in glioma, appeared in a recent issue of the Journal of Medical Genetics, a journal published by the British Medical Association.

"Glioma is a poorly understood cancer with high morbidity and devastating outcomes," said study lead author Kathleen M. Egan, Sc.D., interim program leader of Cancer Epidemiology and vice chair of the Department of Cancer Epidemiology. "However, the discovery of the association of the TP53 genetic variant rs78378222 with glioma provides new insights into these tumors and offers better prospects for identifying people at risk."

According to the authors, their study "genotyped' the single nucleotide polymorphism (SNP, or "snip") rs78378222 in TP53, an important tumor suppressor gene. The researchers said the SNP disrupts the TP53 signal and, because of its activity, has been linked to a variety of cancers. This study linked the presence of the rare form of rs78378222 to deadly glioma.

The researchers conducted a large, clinic-based, case-control study of individuals age 18 and older with a recent glioma diagnosis. A total of 566 glioma cases and 603 controls were genotyped for the rs78378222 variant.

Study results reveal that the odds of developing glioma were increased 3.5 times among the rare variant allele carriers. However, when researchers examined the impact of rs78378222 on survival, they found an approximately 50 percent reduction in death rates for those who were variant allele carriers.

"That the variant increased survival chances was an unexpected finding," Egan said. "It is tempting to speculate that the presence of the risk allele could direct tumor development into a less aggressive path."

The researchers concluded that their study results "may shed light on the etiology and progression of these tumors."

In addition to researchers from Moffitt, researchers from The University of Alabama at Birmingham, Emory School of Medicine and Vanderbilt University participated in the study and co-authored the paper.

The study was supported by funding from Public Health Service Grants R01CA11674 from the National Cancer Institute and the U.S. Department of Health and Human Services, as well as institutional funding from Moffitt and the Vanderbilt-Ingram Cancer Center.

About Moffitt Cancer Center
Follow Moffitt on Facebook: www.facebook.com/MoffittCancerCenter
Follow Moffitt on Twitter: @MoffittNews
Follow Moffitt on YouTube: MoffittNews

Located in Tampa, Moffitt Cancer Center is a National Cancer Institute-designated Comprehensive Cancer Center, which recognizes Moffitt's excellence in research and contributions to clinical trials, prevention and cancer control. Moffitt is also a member of the National Comprehensive Cancer Network, a prestigious alliance of the country's leading cancer centers, and is listed in U.S. News & World Report as one of "America's Best Hospitals" for cancer.

Media release by Florida Science Communications

Patty Kim | EurekAlert!
Further information:
http://www.moffitt.org

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>