Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moffitt Cancer Center Study Validates Activity of Rare Genetic Variant in Glioma

03.07.2012
High risk and better outcome for glioma wrapped up in rare gene variant
Researchers at Moffitt Cancer Center working with colleagues at three other institutions have validated a link between a rare genetic variant and the risk of glioma, the most common and lethal type of brain tumor. The validation study also uncovered an association between the same rare genetic variant and improved rates of survival for patients with glioma.

The study, the first to confirm a rare susceptibility variant in glioma, appeared in a recent issue of the Journal of Medical Genetics, a journal published by the British Medical Association.

"Glioma is a poorly understood cancer with high morbidity and devastating outcomes," said study lead author Kathleen M. Egan, Sc.D., interim program leader of Cancer Epidemiology and vice chair of the Department of Cancer Epidemiology. "However, the discovery of the association of the TP53 genetic variant rs78378222 with glioma provides new insights into these tumors and offers better prospects for identifying people at risk."

According to the authors, their study "genotyped' the single nucleotide polymorphism (SNP, or "snip") rs78378222 in TP53, an important tumor suppressor gene. The researchers said the SNP disrupts the TP53 signal and, because of its activity, has been linked to a variety of cancers. This study linked the presence of the rare form of rs78378222 to deadly glioma.

The researchers conducted a large, clinic-based, case-control study of individuals age 18 and older with a recent glioma diagnosis. A total of 566 glioma cases and 603 controls were genotyped for the rs78378222 variant.

Study results reveal that the odds of developing glioma were increased 3.5 times among the rare variant allele carriers. However, when researchers examined the impact of rs78378222 on survival, they found an approximately 50 percent reduction in death rates for those who were variant allele carriers.

"That the variant increased survival chances was an unexpected finding," Egan said. "It is tempting to speculate that the presence of the risk allele could direct tumor development into a less aggressive path."

The researchers concluded that their study results "may shed light on the etiology and progression of these tumors."

In addition to researchers from Moffitt, researchers from The University of Alabama at Birmingham, Emory School of Medicine and Vanderbilt University participated in the study and co-authored the paper.

The study was supported by funding from Public Health Service Grants R01CA11674 from the National Cancer Institute and the U.S. Department of Health and Human Services, as well as institutional funding from Moffitt and the Vanderbilt-Ingram Cancer Center.

About Moffitt Cancer Center
Follow Moffitt on Facebook: www.facebook.com/MoffittCancerCenter
Follow Moffitt on Twitter: @MoffittNews
Follow Moffitt on YouTube: MoffittNews

Located in Tampa, Moffitt Cancer Center is a National Cancer Institute-designated Comprehensive Cancer Center, which recognizes Moffitt's excellence in research and contributions to clinical trials, prevention and cancer control. Moffitt is also a member of the National Comprehensive Cancer Network, a prestigious alliance of the country's leading cancer centers, and is listed in U.S. News & World Report as one of "America's Best Hospitals" for cancer.

Media release by Florida Science Communications

Patty Kim | EurekAlert!
Further information:
http://www.moffitt.org

More articles from Health and Medicine:

nachricht Serious children’s infections also spreading in Switzerland
26.07.2017 | Universitätsspital Bern

nachricht New vaccine production could improve flu shot accuracy
25.07.2017 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>