Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moffitt Cancer Center researchers validate molecular signature to predict radiation therapy benefit

16.08.2012
Researchers at Moffitt Cancer Center, working with colleagues in Sweden, the Netherlands and Puerto Rico, have validated a radiosensitivity molecular signature that can lead to better radiation therapy decisions for treating patients with breast cancer.
The results appeared in a recent issue of Clinical Cancer Research, a publication of the American Association for Cancer Research.

The study examined patients with breast cancer who had been treated with radiation therapy and demonstrated that a radiosensitivity molecular signature (RSI) could predict clinical outcomes exclusively in patients treated with radiation therapy. The radiosensitivity molecular signature (RSI) used by the research team had previously been tested and validated for rectal, esophageal, and head and neck cancers. The technology, which identifies radiosensitivity and radioresistance, opens the door to biologically guided radiation therapy and offers the potential for better outcomes.

“Developing a radiosensitivity predictive assay has been a goal of radiation biology for decades,” said Javier F. Torres-Roca, M.D., member of the Experimental Therapeutics program at Moffitt. “This effort supports the emphasis on personalized medicine, where the goal is to use molecular signatures to guide therapeutic decisions.”

According to Torres-Roca, approximately 60 percent of all cancer patients receive radiation therapy during their treatment. Yet until now, no molecular diagnostic or biomarker of radiosensitivity had been developed to predict its benefit.

The radiosensitivity molecular signature was developed based on gene expression for 10 specific genes and a linear regression algorithm. RSI was developed in 48 cancer cell lines using a systems-biology strategy focused on identifying biomarkers for cellular radiosensitivity.
This study validated RSI’s benefit when researchers found that radiosensitive breast cancer patients had an improved five-year, relapse-free survival when compared to radioresistant patients.

“This study validated RSI in 503 patients in two independent data sets,” Torres-Roca said. “We have validated RSI in five independent cohorts totaling 621 patients, so this latest validation study, to the best of our knowledge, makes this technology the most extensively validated molecular signature in radiation oncology.”

The successful transition from applying the technology to cell lines to patient application also suggests that the biological basis of cellular radiosensitivity is conserved between cell lines and patients and also across epithelial tumors, Torres-Roca said.

“We propose that RSI is a predictive biomarker of radiation therapy therapeutic benefit for patients with breast cancer,” Torres-Roca said. “This novel biomarker provides an opportunity to integrate individual tumor biology with clinical decision-making in radiation oncology.”

Torres-Roca’s research was supported in part by the National Cancer Institute, part of the National Institutes of Health, through the grant number R21 CA101355 and R21 CA135620; the National Functional Genomics Center; and the State of Florida Bankhead-Coley Foundation (09BB-22).

The RSI technology is owned by Moffitt and licensed to Cvergenx, Inc., an advanced cancer molecular diagnostics company committed to delivering personalized radiation therapy to cancer patients.

About Moffitt Cancer Center
Located in Tampa, Moffitt is one of only 41 National Cancer Institute-designated Comprehensive Cancer Centers, a distinction that recognizes Moffitt’s excellence in research, its contributions to clinical trials, prevention and cancer control. Since 1999, Moffitt has been listed in U.S. News & World Report as one of “America’s Best Hospitals” for cancer. With more than 4,200 employees, Moffitt has an economic impact on the state of nearly $2 billion. For more information, visit MOFFITT.org, and follow the Moffitt momentum on Facebook, twitter and YouTube.

Kim Polacek | EurekAlert!
Further information:
http://www.moffitt.org

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>