Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moffitt Cancer Center Researchers Find Novel Predictor for MDS Progression Risk

13.09.2012
Researchers at Moffitt Cancer Center and colleagues have discovered that changes in the physical characteristics of the effector memory regulatory T cell can predict the progression risk of myelodysplastic syndromes (MDS) to acute myeloid leukemia. The finding could improve prognostication for patients with MDS and better inform therapeutic decision making.
The study published in the August issue of The Journal of Immunology.

Awareness of the condition increased earlier this year when ABC’s “Good Morning America” co-anchor Robin Roberts announced that she is battling MDS. Formerly known as pre-leukemia, MDS is a collection of blood disorders. One in three patients with MDS develops bone marrow failure and progresses to acute myelogenous leukemia within the first few years after diagnosis.

MDS involves the ineffective production of blood cells in bone marrow and often leaves patients anemic and in need of frequent blood transfusions.

The disease may develop as the result of chemotherapy or radiation for cancer treatment or can be related to bone marrow failure resulting from frequent transfusions and subsequent iron overload. Because the body has no natural means to reduce iron that accumulates from repeated transfusions, a patient’s organs can become overloaded with iron, leading to heart failure, liver injury, susceptibility to infection and other complications. Bone marrow transplantation may be necessary.

Seeking to understand more about the development of MDS, Moffitt researchers and their colleagues investigated aspects of the immune system, particularly the role of regulatory T cells, also known as Tregs. Tregs, said the researchers, are well-defined players in tumor immune invasion in solid tumors, but little is known about the role Tregs play in pre-malignant human diseases.

“We investigated a Treg subset called ‘effector memory Tregs,’ ” said study senior author Pearlie K. Epling-Burnette, Pharm.D., Ph.D., senior member of Moffitt’s Immunology Department. “We found that changes in the physical characteristics, or phenotypes, of Tregs in MDS suggest that they may be recently activated in a manner similar to effector memory T cells. By looking at a patient’s effector memory Treg cells, we were able to identify patients at higher risk for MDS progression.”

An increase in effector memory Tregs likely reflects active immune suppression and may represent the earliest biomarker indicating conversion to an immunosuppressive microenvironment, the researchers said.

The team concluded that the changes to effector memory Treg phenotype may also be a useful tool for identifying MDS patients who may respond to specific classes of drugs. This would make inclusion of a patient’s Treg status into prognostic and treatment models potentially valuable for informing therapy decisions for patients with MDS.
“Our study sheds light on a unique aspect of T cells and immunity in a pre-malignant model of disease and specifically implicates the importance of changes to effector memory Tregs,” concluded Epling-Burnette and her co-authors. “Our findings specifically implicate effector Treg expansion in disease progression in MDS.”

The study was funded by grants from the National Institutes of Health (R01 Grant CA129952) and Genzyme Corporation.

About Moffitt Cancer Center
Located in Tampa, Moffitt is one of only 41 National Cancer Institute-designated Comprehensive Cancer Centers, a distinction that recognizes Moffitt’s excellence in research, its contributions to clinical trials, prevention and cancer control. Since 1999, Moffitt has been listed in U.S. News & World Report as one of “America’s Best Hospitals” for cancer. With more than 4,200 employees, Moffitt has an economic impact on the state of nearly $2 billion. For more information, visit MOFFITT.org, and follow the Moffitt momentum on Facebook, twitter and YouTube.

Media release by Florida Science Communications

Kim Polacek | EurekAlert!
Further information:
http://www.moffitt.org

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>