Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Moffitt Cancer Center Researchers Find Novel Predictor for MDS Progression Risk

Researchers at Moffitt Cancer Center and colleagues have discovered that changes in the physical characteristics of the effector memory regulatory T cell can predict the progression risk of myelodysplastic syndromes (MDS) to acute myeloid leukemia. The finding could improve prognostication for patients with MDS and better inform therapeutic decision making.
The study published in the August issue of The Journal of Immunology.

Awareness of the condition increased earlier this year when ABC’s “Good Morning America” co-anchor Robin Roberts announced that she is battling MDS. Formerly known as pre-leukemia, MDS is a collection of blood disorders. One in three patients with MDS develops bone marrow failure and progresses to acute myelogenous leukemia within the first few years after diagnosis.

MDS involves the ineffective production of blood cells in bone marrow and often leaves patients anemic and in need of frequent blood transfusions.

The disease may develop as the result of chemotherapy or radiation for cancer treatment or can be related to bone marrow failure resulting from frequent transfusions and subsequent iron overload. Because the body has no natural means to reduce iron that accumulates from repeated transfusions, a patient’s organs can become overloaded with iron, leading to heart failure, liver injury, susceptibility to infection and other complications. Bone marrow transplantation may be necessary.

Seeking to understand more about the development of MDS, Moffitt researchers and their colleagues investigated aspects of the immune system, particularly the role of regulatory T cells, also known as Tregs. Tregs, said the researchers, are well-defined players in tumor immune invasion in solid tumors, but little is known about the role Tregs play in pre-malignant human diseases.

“We investigated a Treg subset called ‘effector memory Tregs,’ ” said study senior author Pearlie K. Epling-Burnette, Pharm.D., Ph.D., senior member of Moffitt’s Immunology Department. “We found that changes in the physical characteristics, or phenotypes, of Tregs in MDS suggest that they may be recently activated in a manner similar to effector memory T cells. By looking at a patient’s effector memory Treg cells, we were able to identify patients at higher risk for MDS progression.”

An increase in effector memory Tregs likely reflects active immune suppression and may represent the earliest biomarker indicating conversion to an immunosuppressive microenvironment, the researchers said.

The team concluded that the changes to effector memory Treg phenotype may also be a useful tool for identifying MDS patients who may respond to specific classes of drugs. This would make inclusion of a patient’s Treg status into prognostic and treatment models potentially valuable for informing therapy decisions for patients with MDS.
“Our study sheds light on a unique aspect of T cells and immunity in a pre-malignant model of disease and specifically implicates the importance of changes to effector memory Tregs,” concluded Epling-Burnette and her co-authors. “Our findings specifically implicate effector Treg expansion in disease progression in MDS.”

The study was funded by grants from the National Institutes of Health (R01 Grant CA129952) and Genzyme Corporation.

About Moffitt Cancer Center
Located in Tampa, Moffitt is one of only 41 National Cancer Institute-designated Comprehensive Cancer Centers, a distinction that recognizes Moffitt’s excellence in research, its contributions to clinical trials, prevention and cancer control. Since 1999, Moffitt has been listed in U.S. News & World Report as one of “America’s Best Hospitals” for cancer. With more than 4,200 employees, Moffitt has an economic impact on the state of nearly $2 billion. For more information, visit, and follow the Moffitt momentum on Facebook, twitter and YouTube.

Media release by Florida Science Communications

Kim Polacek | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>