Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moffitt Cancer Center Researchers Develop and Test New Anti-Cancer Vaccine

11.06.2012
Synthetic vaccine effective in killing HPV-caused tumors in mice
Researchers at Moffitt Cancer Center have developed and tested in mice a synthetic vaccine and found it effective in killing human papillomavirus-derived cancer, a virus linked to cervical cancers among others. The research was published in a recent issue of Cancer Immunology, Immunotherapy.

"Vaccines for cancer can be good alternatives to conventional therapies that result in serious side-effects and are rarely effective against advanced disease," said Esteban Celis, M.D., Ph.D., senior member and professor in Moffitt's Immunology Program. "The human papillomavirus, or HPV, is known to cause 99 percent of cervical cancers and annually causes more than 250,000 deaths worldwide." In addition, HPV is the causative agent of a large proportion of head and neck and genital cancers.

Although two approved prophylactic vaccines against strains of HPV that cause cervical cancer are now in wide use as a measure to prevent HPV infections, these vaccines cannot be used to treat HPV-induced cancers. Thus, there is a need to develop therapeutic vaccines for HPV-related tumors.

In an effort to find an effective HPV-cancer vaccine that would eliminate existing HPV-induced cancer, Celis and Kelly Barrios-Marrugo, Ph.D., of the University of South Florida College of Medicine's Molecular Medicine program, designed a peptide vaccination strategy called TriVax-HPV.

The TriVax vaccine strategy was designed to generate large numbers of cytotoxic T-cells that would seek out the proteins preferentially expressed in the tumors. The HPV16-E6 and E7 proteins function as oncogenic proteins inducing cancer. Thus, according to Celis and Barrios-Marrugo, a vaccine targeting these viral proteins is an "ideal candidate" to create strong immune responses, with the additional benefit of not generating autoimmune-related pathologies.

When they tested their vaccine in mice with HPV16-induced tumors, they found that TriVax containing a small synthetic fragment (peptide) of the E7 protein "induced tumor clearance in 100 percent of the treated mice" while the unvaccinated mice with HPV-induced tumors had their tumors grow "at a fast rate."

"Although the magnitude of the T-cell responses achieved with TriVax in mice is impressive," Barrios-Marrugo said," we do not know whether similar effects can be accomplished in humans."

Celis and Barrios-Marrugo point out that current therapies for cervical cancer can be devastating, highly toxic and associated with a 10 percent chance of recurrence. Additionally, a significant proportion of women in the Third World will not receive the approved prophylactic vaccine to prevent HPV infection and, thus, will continue at high risk for cervical and other cancers related to HPV.

"We believe that these studies may help to launch more effective and less invasive therapeutic vaccines for HPV-caused malignancies," concluded the authors.

Their research was supported by National Institutes of Health grants RO1CA136828 and RO1CA157303.

About Moffitt Cancer Center
Follow Moffitt on Facebook: www.facebook.com/MoffittCancerCenter
Follow Moffitt on Twitter: @MoffittNews
Follow Moffitt on YouTube: MoffittNews

Located in Tampa, Moffitt Cancer Center is a National Cancer Institute-designated Comprehensive Cancer Center, which recognizes Moffitt's excellence in research and contributions to clinical trials, prevention and cancer control. Moffitt is also a member of the National Comprehensive Cancer Network, a prestigious alliance of the country's leading cancer centers, and is listed in U.S. News & World Report as one of "America's Best Hospitals" for cancer.

Media release by Florida Science Communications

Patty Kim | EurekAlert!
Further information:
http://www.moffitt.org

More articles from Health and Medicine:

nachricht Finnish research group discovers a new immune system regulator
23.02.2018 | University of Turku

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>