Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Model Virus Structure Shows Why There’s No Cure for Common Cold

In a pair of landmark studies that exploit the genetic sequencing of the “missing link” cold virus, rhinovirus C, scientists at the University of Wisconsin-Madison have constructed a three-dimensional model of the pathogen that shows why there is no cure yet for the common cold.

Writing today (Oct. 28, 2013) in the journal Virology, a team led by UW-Madison biochemistry Professor Ann Palmenberg provides a meticulous topographical model of the capsid or protein shell of a cold virus that until 2006 was unknown to science.

Two faces of the common cold. The protein coat of the “missing link” cold virus, Rhinovirus C (right), has significant differences from the more observable and better studied Rhinovirus A. Those surface differences, revealed in a new three-dimensional model of Rhinovirus C from the UW–Madison lab of Ann C. Palmenberg, explain why no effective drugs have yet been devised to thwart the common cold.

Rhinovirus C is believed to be responsible for up to half of all childhood colds, and is a serious complicating factor for respiratory conditions such as asthma. Together with rhinoviruses A and B, the recently discovered virus is responsible for millions of illnesses yearly at an estimated annual cost of more than $40 billion in the United States alone.

The work is important because it sculpts a highly detailed structural model of the virus, showing that the protein shell of the virus is distinct from those of other strains of cold viruses.

“The question we sought to answer was how is it different and what can we do about it? We found it is indeed quite different,” says Palmenberg, noting that the new structure “explains most of the previous failures of drug trials against rhinovirus.”

The A and B families of cold virus, including their three-dimensional structures, have long been known to science as they can easily be grown and studied in the lab. Rhinovirus C, on the other hand, resists culturing and escaped notice entirely until 2006 when “gene chips” and advanced gene sequencing revealed the virus had long been lurking in human cells alongside the more observable A and B virus strains.

The new cold virus model was built “in silico,” drawing on advanced bioinformatics and the genetic sequences of 500 rhinovirus C genomes, which provided the three-dimensional coordinates of the viral capsid.

“It’s a very high-resolution model,” notes Palmenberg, whose group along with a team from the University of Maryland was the first to map the genomes for all known common cold virus strains in 2009. “We can see that it fits the data.”

With a structure in hand, the likelihood that drugs can be designed to effectively thwart colds may be in the offing. Drugs that work well against the A and B strains of cold virus have been developed and advanced to clinical trials. However, their efficacy was blunted because they were built to take advantage of the surface features of the better known strains, whose structures were resolved years ago through X-ray crystallography, a well-established technique for obtaining the structures of critical molecules.

Because all three cold virus strains all contribute to the common cold, drug candidates failed as the surface features that permit rhinovirus C to dock with host cells and evade the immune system were unknown and different from those of rhinovirus A and B.

Based on the new structure, “we predict you’ll have to make a C-specific drug,” explains Holly A. Basta, the lead author of the study and a graduate student working with Palmenberg in the UW-Madison Institute for Molecular Virology. “All the [existing] drugs we tested did not work.”

Antiviral drugs work by attaching to and modifying surface features of the virus. To be effective, a drug, like the right piece of a jigsaw puzzle, must fit and lock into the virus. The lack of a three-dimensional structure for rhinovirus C meant that the pharmaceutical companies designing cold-thwarting drugs were flying blind.

“It has a different receptor and a different receptor-binding platform,” Palmenberg explains. “Because it’s different, we have to go after it in a different way.”

In addition to Basta and Palmenberg, co-authors of the new studies include Jean-Yves Sgro, Shamaila Ashraf, Yury Bochkov and James E. Gern, all of UW-Madison.

—Terry Devitt, 608-262-8282,

The new rhinovirus C studies were supported by the National Institutes of Health, grants AI17331 and U19 AI104317.

Terry Devitt | Newswise
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>