Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Model Virus Structure Shows Why There’s No Cure for Common Cold

30.10.2013
In a pair of landmark studies that exploit the genetic sequencing of the “missing link” cold virus, rhinovirus C, scientists at the University of Wisconsin-Madison have constructed a three-dimensional model of the pathogen that shows why there is no cure yet for the common cold.

Writing today (Oct. 28, 2013) in the journal Virology, a team led by UW-Madison biochemistry Professor Ann Palmenberg provides a meticulous topographical model of the capsid or protein shell of a cold virus that until 2006 was unknown to science.


Two faces of the common cold. The protein coat of the “missing link” cold virus, Rhinovirus C (right), has significant differences from the more observable and better studied Rhinovirus A. Those surface differences, revealed in a new three-dimensional model of Rhinovirus C from the UW–Madison lab of Ann C. Palmenberg, explain why no effective drugs have yet been devised to thwart the common cold.

Rhinovirus C is believed to be responsible for up to half of all childhood colds, and is a serious complicating factor for respiratory conditions such as asthma. Together with rhinoviruses A and B, the recently discovered virus is responsible for millions of illnesses yearly at an estimated annual cost of more than $40 billion in the United States alone.

The work is important because it sculpts a highly detailed structural model of the virus, showing that the protein shell of the virus is distinct from those of other strains of cold viruses.

“The question we sought to answer was how is it different and what can we do about it? We found it is indeed quite different,” says Palmenberg, noting that the new structure “explains most of the previous failures of drug trials against rhinovirus.”

The A and B families of cold virus, including their three-dimensional structures, have long been known to science as they can easily be grown and studied in the lab. Rhinovirus C, on the other hand, resists culturing and escaped notice entirely until 2006 when “gene chips” and advanced gene sequencing revealed the virus had long been lurking in human cells alongside the more observable A and B virus strains.

The new cold virus model was built “in silico,” drawing on advanced bioinformatics and the genetic sequences of 500 rhinovirus C genomes, which provided the three-dimensional coordinates of the viral capsid.

“It’s a very high-resolution model,” notes Palmenberg, whose group along with a team from the University of Maryland was the first to map the genomes for all known common cold virus strains in 2009. “We can see that it fits the data.”

With a structure in hand, the likelihood that drugs can be designed to effectively thwart colds may be in the offing. Drugs that work well against the A and B strains of cold virus have been developed and advanced to clinical trials. However, their efficacy was blunted because they were built to take advantage of the surface features of the better known strains, whose structures were resolved years ago through X-ray crystallography, a well-established technique for obtaining the structures of critical molecules.

Because all three cold virus strains all contribute to the common cold, drug candidates failed as the surface features that permit rhinovirus C to dock with host cells and evade the immune system were unknown and different from those of rhinovirus A and B.

Based on the new structure, “we predict you’ll have to make a C-specific drug,” explains Holly A. Basta, the lead author of the study and a graduate student working with Palmenberg in the UW-Madison Institute for Molecular Virology. “All the [existing] drugs we tested did not work.”

Antiviral drugs work by attaching to and modifying surface features of the virus. To be effective, a drug, like the right piece of a jigsaw puzzle, must fit and lock into the virus. The lack of a three-dimensional structure for rhinovirus C meant that the pharmaceutical companies designing cold-thwarting drugs were flying blind.

“It has a different receptor and a different receptor-binding platform,” Palmenberg explains. “Because it’s different, we have to go after it in a different way.”

In addition to Basta and Palmenberg, co-authors of the new studies include Jean-Yves Sgro, Shamaila Ashraf, Yury Bochkov and James E. Gern, all of UW-Madison.

—Terry Devitt, 608-262-8282, trdevitt@wisc.edu

The new rhinovirus C studies were supported by the National Institutes of Health, grants AI17331 and U19 AI104317.

Terry Devitt | Newswise
Further information:
http://www.wisc.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>