Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More Mobility – Due to Deafferentation

05.11.2012
Therapy for Stroke Patients Improved by Scientists of Jena University and the University Hospital Jena

Painkilling drugs that make many therapies possible are a blessing for patients. Thanks to modern anesthetics, not only can surgical operations be conducted without causing pain, they are also used for various diagnostic procedures.


In the ‘Constraint-Induced Movement Therapy’ (CIMT) the healthy arm is being restrained in a cuff, while the stroke-affected arm and hand are intensely training fine motor skills.

Photo: Jan-Peter Kasper/FSU

Anesthetics can be very useful in therapies for stroke patients, as psychologists and physicians of the Friedrich Schiller University Jena (Germany) and the University Hospital Jena are now able to prove.

In the ‘Journal of Neuroscience’ (DOI:10.1523/JNEUROSCI.5912-11.2012) the researchers present the results of their study, showing how a local anesthetic can distinctly improve the motor skills of patients after a stroke.

“Many stroke patients suffer from chronic impairment of the hand or of the complete arm,” Professor Dr. Thomas Weiss explains. Together with expert colleagues the psychologist of the department of Biological and Clinical Psychology at Jena University has been working for a number of years on a specialized medical training therapy which clearly enhances the mobility of stroke patients. In the ‘Constraint-Induced Movement Therapy’ (CIMT) the healthy arm is being restrained in a cuff, while the stroke-affected arm and hand are intensely training fine motor skills. Patients are asked to carry out tasks such as stacking small toy blocks or putting tiny pins into a perforated board. Daily activities like washing one’s hand are part of the training.

“Nearly every affected person benefits from this training,” Weiss‘s colleague Prof. Dr. Wolfgang Miltner says. The chair of Biological and Clinical Psychology developed the therapy together with American colleagues and refers to the comprehensive study results about the efficiency of the program. “We are happy to carry out this therapy on many patients - together with our colleagues from the psychology department in the neurological day hospital,” the director of the clinic for Neurology, Prof. Dr. Otto Witte, stresses.

In addition, the impact of the exercise therapy could be clearly enhanced when the sensitivity of the affected arm was lowered by an anesthetic, as the interdisciplinary Jena team was able to demonstrate. In their study, the scientists examined 36 patients. Half of the patients had a local anesthetic cream applied on their forearms. Meanwhile the other patient group only received a placebo. Afterwards, both patient groups went into their exercise therapy for a day.

“Unsurprisingly, the motor performance of all patients was strongly enhanced,” Prof. Weiss commented on the result. “Beyond that, it became obvious that the patients who received the anesthetic benefited even more than the placebo group,“ Weiss says. The researchers could show the reason for this effect using magnetoencephalographic imaging (MEG) of the patients. The temporary interruption of nerve impulses from the forearm leads to a decreasing activity in the brain areas processing these impulses. “At the same time neighboring brain cells are activated more strongly,” the Jena Psychologist explains. Thus the brain reacts to the missing impulses from the forearm with an increased sensitivity in the hand as the MEG images showed. Consequently the motor performance improves as well. “This process starts within minutes,” Thomas Weiss says.

A subsequent study is going to show whether the combination of local anesthetics and therapeutic exercise will improve the mobility of stroke patients in the long term.

Original Publication:
Sens E. et al.: Effects of Temporary Functional Deafferentation on the Brain, Sensation, and Behavior of Stroke Patients, Journal of Neuroscience Vol. 32 (34): 11773-11779, DOI: 10.1523/JNEUROSCI.5912-11.2012

Further information about ‘Constraint-Induced Movement Therapy’ (CIMT) can be found at: http://www.taubsches-training.uni-jena.de.

Contact:
Prof. Dr. Thomas Weiss
Institute of Psychology
Friedrich Schiller University Jena
Am Steiger 3 / Haus 1, D-07743 Jena
Germany
Phone: ++49 3641 / 945143
Email: weiss[at]biopsy.uni-jena.de

Dr. Ute Schönfelder | idw
Further information:
http://www.taubsches-training.uni-jena.de

Further reports about: CIMT Mobility brain area brain cell exercise therapy movement stroke stroke patients

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>