Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mobile phones affect memory in laboratory animals

Can radiation from cell phones affect the memory?

Yes, at least it does so in rat experiments at the Division of Neurosurgery, Lund University, in Sweden. Henrietta Nittby studied rats that were exposed to mobile phone radiation for two hours a week for more than a year. These rats had poorer results on a memory test than rats that had not been exposed to radiation.

The memory test consisted of releasing the rats in a box with four objects mounted in it. These objects were different on the two occasions, and the placement of the objects was different from one time to the other.

The actual test trial was the third occasion. This time the rats encountered two of the objects from the first and two of the objects from the second occasion. The control rats spent more time exploring the objects from the first occasion, which were more interesting since the rats had not seen them for some time. The experiment rats, on the other hand, evinced less pronounced differences in interest.

Henrietta Nittby and her, supervisor Professor Leif Salford, believe that the findings may be related to the team's earlier findings, that is, that microwave radiation from cell phones can affect the so-called blood-brain barrier. This is a barrier that protects the brain by preventing substances circulating in the blood from penetrating into the brain tissue and damaging nerve cells. Leif Salford and his associates have previously found that albumin, a protein that functions as a transport molecule in the blood, leaks into brain tissue when laboratory animals are exposed to mobile phone radiation.

The research team also found certain nerve damage in the form of damaged nerve cells in the cerebral cortex and in the hippocampus, the memory center of the brain. Albumin leakage occurs directly after radiation, while the nerve damage occurs only later, after four to eight weeks. Moreover, they have discovered alterations in the activity of a large number of genes, not in individual genes but in groups that are functionally related.

"We now see that things happen to the brains of lab animals after cell phone radiation. The next step is to try to understand why this happens," says Henrietta Nittby. She has a cell phone herself, but never holds it to her ear, using hands-free equipment instead.

Henrietta Nittby can be reached at phone: +46 (0)46-173922 or cell phone: +46 (0)70-57 92 731; e-mail

Pressofficer Ingela Björck;,+46-46 222 7646

Ingela Björck | idw
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>