Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mobile phones affect memory in laboratory animals

05.12.2008
Can radiation from cell phones affect the memory?

Yes, at least it does so in rat experiments at the Division of Neurosurgery, Lund University, in Sweden. Henrietta Nittby studied rats that were exposed to mobile phone radiation for two hours a week for more than a year. These rats had poorer results on a memory test than rats that had not been exposed to radiation.

The memory test consisted of releasing the rats in a box with four objects mounted in it. These objects were different on the two occasions, and the placement of the objects was different from one time to the other.

The actual test trial was the third occasion. This time the rats encountered two of the objects from the first and two of the objects from the second occasion. The control rats spent more time exploring the objects from the first occasion, which were more interesting since the rats had not seen them for some time. The experiment rats, on the other hand, evinced less pronounced differences in interest.

Henrietta Nittby and her, supervisor Professor Leif Salford, believe that the findings may be related to the team's earlier findings, that is, that microwave radiation from cell phones can affect the so-called blood-brain barrier. This is a barrier that protects the brain by preventing substances circulating in the blood from penetrating into the brain tissue and damaging nerve cells. Leif Salford and his associates have previously found that albumin, a protein that functions as a transport molecule in the blood, leaks into brain tissue when laboratory animals are exposed to mobile phone radiation.

The research team also found certain nerve damage in the form of damaged nerve cells in the cerebral cortex and in the hippocampus, the memory center of the brain. Albumin leakage occurs directly after radiation, while the nerve damage occurs only later, after four to eight weeks. Moreover, they have discovered alterations in the activity of a large number of genes, not in individual genes but in groups that are functionally related.

"We now see that things happen to the brains of lab animals after cell phone radiation. The next step is to try to understand why this happens," says Henrietta Nittby. She has a cell phone herself, but never holds it to her ear, using hands-free equipment instead.

Henrietta Nittby can be reached at phone: +46 (0)46-173922 or cell phone: +46 (0)70-57 92 731; e-mail Henrietta.Nittby@med.lu.se

Pressofficer Ingela Björck; ingela.bjorck@info.lu.se,+46-46 222 7646

Ingela Björck | idw
Further information:
http://www.vr.se

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>