Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT and CDC discover why H1N1 flu spreads inefficiently

06.07.2009
Flu virus ill-suited for rapid transmission, but researchers say new strain bears watching, could mutate

A team from MIT and the Centers for Disease Control and Prevention has found a genetic explanation for why the new H1N1 "swine flu" virus has spread from person to person less effectively than other flu viruses.

The H1N1 strain, which circled the globe this spring, has a form of surface protein that binds inefficiently to receptors found in the human respiratory tract, the team reports in the July 2 online edition of Science.

"While the virus is able to bind human receptors, it clearly appears to be restricted," says Ram Sasisekharan, the Edward Hood Taplin Professor and director of the Harvard-MIT Division of Health Sciences and Technology (HST) and the lead MIT author of the paper. Sasisekharan and his laboratory co-workers have been actively investigating influenza viruses.

That restricted, or weak, binding, along with a genetic variation in an H1N1 polymerase enzyme, which MIT researchers first reported three weeks ago in Nature Biotechnology, explains why the virus has not spread as efficiently as seasonal flu, says Sasisekharan. However, flu viruses are known to mutate rapidly, so there is cause for concern if H1N1 undergoes mutations that improve its binding affinity.

"We need to pay careful attention to the evolution of this virus," says Sasisekharan.

On June 11, the World Health Organization declared a level 6 pandemic alert for H1N1. More than 300 people have died and more than 70,000 people have been infected, according to the WHO.

Genetic variation

Sasisekharan and CDC senior microbiologist Terrence Tumpey have previously shown that a flu virus's ability to infect humans depends on whether its hemagglutinin protein can bind to a specific type of receptor on the surface of human respiratory cells.

In the new Science paper, Sasisekharan, Tumpey and colleagues compared the new H1N1 strain to several seasonal flu strains, including some milder H1N1 strains, and to the virus that caused the 1918 flu pandemic. They found that the new strain, as expected, is able to bind to the predominant receptors in the human respiratory tract, known as umbrella-shaped alpha 2-6 glycan receptors.

However, binding efficiency varies between flu strains, and that variation is partly determined by the receptor-binding site (RBS) within the hemagglutinin protein. The team found that the new H1N1 strain's RBS binds human receptors much less effectively than other flu viruses that infect humans.

The researchers also found that the new H1N1 strain spreads inefficiently in ferrets, which accurately mimics human influenza disease including how it spreads or transmits in humans. When the ferrets were in close contact with each other, they were exposed to enough virus particles that infection spread easily. However, when ferrets were kept separate and the virus could spread only through airborne respiratory droplets, the illness spread much less effectively.

This is consistent with the transmission of this virus seen in humans so far, says Sasisekharan. Most outbreaks have occurred in limited clusters, sometimes within a family or a school but not spread much further.

"One of the big payoffs of long-term investments in carbohydrate biology and chemistry research is an understanding of the relationships between cell surface carbohydrate structure and viral infectivity," said Jeremy M. Berg, director of the National Institute of General Medical Sciences of the National Institutes of Health, which partly funded the research. "Tools developed in building such understanding help in the response to events like the recent H1N1 outbreak."

Second mutation

The researchers also pinpointed a second mutation that impairs H1N1's ability to spread rapidly.

Recent studies have shown that a viral RNA polymerase known as PB2 is critical for efficient influenza transmissibility. (RNA polymerase controls the viruses' replication once they infect a host.) The new H1N1 strain does not have the version of the PB2 gene necessary for efficient transmission.

MIT researchers led by Sasisekharan first reported the PB2 work in the June 9 online issue of Nature Biotechnology. That study also found that the new H1N1 strain has substantial genetic variability in the proteins targeted by current vaccines, making it likely that existing seasonal vaccines will be ineffective against the new strain.

Moreover, the researchers discovered that the new strain might just need a single change or mutation that could lead to inefficient interaction with the influenza drug oseltamivir, commonly known as Tamiflu, raising the possibility that strains resistant to Tamiflu could emerge easily.

The research done at MIT was funded by the Singapore-MIT Alliance for Research and Technology and the National Institutes of General Medical Sciences.

Patti Richards | EurekAlert!
Further information:
http://www.mit.edu

More articles from Health and Medicine:

nachricht TSRI researchers develop new method to 'fingerprint' HIV
29.03.2017 | Scripps Research Institute

nachricht Periodic ventilation keeps more pollen out than tilted-open windows
29.03.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>