Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT and CDC discover why H1N1 flu spreads inefficiently

06.07.2009
Flu virus ill-suited for rapid transmission, but researchers say new strain bears watching, could mutate

A team from MIT and the Centers for Disease Control and Prevention has found a genetic explanation for why the new H1N1 "swine flu" virus has spread from person to person less effectively than other flu viruses.

The H1N1 strain, which circled the globe this spring, has a form of surface protein that binds inefficiently to receptors found in the human respiratory tract, the team reports in the July 2 online edition of Science.

"While the virus is able to bind human receptors, it clearly appears to be restricted," says Ram Sasisekharan, the Edward Hood Taplin Professor and director of the Harvard-MIT Division of Health Sciences and Technology (HST) and the lead MIT author of the paper. Sasisekharan and his laboratory co-workers have been actively investigating influenza viruses.

That restricted, or weak, binding, along with a genetic variation in an H1N1 polymerase enzyme, which MIT researchers first reported three weeks ago in Nature Biotechnology, explains why the virus has not spread as efficiently as seasonal flu, says Sasisekharan. However, flu viruses are known to mutate rapidly, so there is cause for concern if H1N1 undergoes mutations that improve its binding affinity.

"We need to pay careful attention to the evolution of this virus," says Sasisekharan.

On June 11, the World Health Organization declared a level 6 pandemic alert for H1N1. More than 300 people have died and more than 70,000 people have been infected, according to the WHO.

Genetic variation

Sasisekharan and CDC senior microbiologist Terrence Tumpey have previously shown that a flu virus's ability to infect humans depends on whether its hemagglutinin protein can bind to a specific type of receptor on the surface of human respiratory cells.

In the new Science paper, Sasisekharan, Tumpey and colleagues compared the new H1N1 strain to several seasonal flu strains, including some milder H1N1 strains, and to the virus that caused the 1918 flu pandemic. They found that the new strain, as expected, is able to bind to the predominant receptors in the human respiratory tract, known as umbrella-shaped alpha 2-6 glycan receptors.

However, binding efficiency varies between flu strains, and that variation is partly determined by the receptor-binding site (RBS) within the hemagglutinin protein. The team found that the new H1N1 strain's RBS binds human receptors much less effectively than other flu viruses that infect humans.

The researchers also found that the new H1N1 strain spreads inefficiently in ferrets, which accurately mimics human influenza disease including how it spreads or transmits in humans. When the ferrets were in close contact with each other, they were exposed to enough virus particles that infection spread easily. However, when ferrets were kept separate and the virus could spread only through airborne respiratory droplets, the illness spread much less effectively.

This is consistent with the transmission of this virus seen in humans so far, says Sasisekharan. Most outbreaks have occurred in limited clusters, sometimes within a family or a school but not spread much further.

"One of the big payoffs of long-term investments in carbohydrate biology and chemistry research is an understanding of the relationships between cell surface carbohydrate structure and viral infectivity," said Jeremy M. Berg, director of the National Institute of General Medical Sciences of the National Institutes of Health, which partly funded the research. "Tools developed in building such understanding help in the response to events like the recent H1N1 outbreak."

Second mutation

The researchers also pinpointed a second mutation that impairs H1N1's ability to spread rapidly.

Recent studies have shown that a viral RNA polymerase known as PB2 is critical for efficient influenza transmissibility. (RNA polymerase controls the viruses' replication once they infect a host.) The new H1N1 strain does not have the version of the PB2 gene necessary for efficient transmission.

MIT researchers led by Sasisekharan first reported the PB2 work in the June 9 online issue of Nature Biotechnology. That study also found that the new H1N1 strain has substantial genetic variability in the proteins targeted by current vaccines, making it likely that existing seasonal vaccines will be ineffective against the new strain.

Moreover, the researchers discovered that the new strain might just need a single change or mutation that could lead to inefficient interaction with the influenza drug oseltamivir, commonly known as Tamiflu, raising the possibility that strains resistant to Tamiflu could emerge easily.

The research done at MIT was funded by the Singapore-MIT Alliance for Research and Technology and the National Institutes of General Medical Sciences.

Patti Richards | EurekAlert!
Further information:
http://www.mit.edu

More articles from Health and Medicine:

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

nachricht High speed video recording precisely measures blood cell velocity
15.11.2017 | ITMO University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>