Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Minimising the spread of deadly Hendra virus

Groundbreaking CSIRO research into how the deadly Hendra virus spreads promises to save the lives of both horses and humans in the future.

CSIRO Livestock Industries' scientists working at the Australian Animal Health Laboratory (AAHL), in Geelong Victoria, have made a major breakthrough in better understanding how Hendra spreads from infected horses to other horses and humans.

Funded by the Australian Biosecurity CRC for Emerging Infectious Diseases, Dr Deb Middleton and her team at AAHL have defined the period following the first signs of disease when horses are most likely to shed Hendra virus and therefore infect other horses and people.

First identified in Brisbane in 1994, Hendra virus, which spreads from flying foxes, has regularly infected horses in Australia. Of the 11 equine outbreaks, four have led to human infection, with three of the six known human cases being fatal, the most recent of these in August 2008.

Dr Middleton says limited information in the past, on when the disease can transmit, has made it difficult to manage infected horses to stop Hendra spreading further to people and other susceptible horses.

"Our research has also determined the best biological samples required for rapid diagnosis of the virus in horses and identified the important relationship between the period of highest transmission risk and the time with which the disease can easily be detected," Dr Middleton says.

As a result of these findings, veterinarians and horse owners are likely to consider the possibility of Hendra virus infection sooner when dealing with sick horses. This will mean appropriate management strategies can be put in place immediately, reducing the risk of spread while testing is being carried out.

"Unlike in horse flu, where apparently healthy horses can transmit the virus, horses in the early stages of Hendra infection generally appear to be at lower risk compared to animals with more advanced signs of illness."

These research findings will be used to update the guidelines that horse owners and vets use to handle potential Hendra virus infections.

Dr Middleton says her research also indicates there is an opportunity to diagnose Hendra virus in horses early, prior to advanced clinical signs and the highest risk of transmission.

"Developing a sensitive and specific stall-side test, which vets could use out in the field to diagnose the disease, has become even more important. However there are still key challenges to developing this type of advanced technology."

Although it is still not known how Hendra spreads from flying foxes to horses, Dr Middleton says the key to preventing human exposure and the exposure of additional horses is first understanding the disease in horses and secondly controlling the viral spread from diseased horses.

All research for the project was undertaken within AAHL's high-biocontainment facility.

Emma Wilkins | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>