Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Mind-readers’ get a clearer view

13.12.2011
A treatment that renders brain tissue transparent allows neuroscientists to visualize neural circuitry at once-unattainable depths

A recent breakthrough in biological sample preparation by scientists at the RIKEN Brain Science Institute in Wako may give Astro Boy’s ‘x-ray vision’ a run for its money. By treating tissue samples with an easy-to-prepare mix of chemicals, Atsushi Miyawaki, Hiroshi Hama and their colleagues can render the brain and other tissues as clear as glass, a reversible transformation that gives researchers an unobstructed view of fluorescently labeled cells residing within1.

For decades, the limits of available technology have thwarted attempts to map the dizzying twists and turns of the brain. Neuroscientists have achieved some success in simpler organisms, such as the worm or fly, by using tiny blades to sequentially peel off ultrathin strips of tissue, which can then be imaged via electron microscopy and reassembled computationally. However, this approach is far too labor-intensive and time-consuming for the reconstruction of a system as complex as the mammalian nervous system.

More recent breakthroughs in optical microscopy technology and a rapidly growing arsenal of multi-colored fluorescent proteins have given researchers potent new tools for brain mapping. By restricting the expression of specific fluorescent labels to particular subsets of cells, one can clearly visualize neural circuits within their natural, three-dimensional context; however, the dense tissue of the brain tends to scatter light, limiting the depth to which such imaging strategies can penetrate.

Several research groups have developed ‘clearing agents’ that improve the transparency of biological samples, such as benzyl-alcohol/benzyl-benzoate (BABB) and a proprietary solution known as FocusClear, but each suffers important limitations. “BABB is an organic solvent that requires dehydration of samples to be cleared,” says Miyawaki. He adds that such treatment can greatly diminish overall sample fluorescence, “and FocusClear does not clear mouse brain samples [readily].” Accordingly, his team’s development of the reagent they call ‘Scale’ could open new frontiers in mouse brain imaging.

Going deeper

Scale initially emerged from the unexpected, chance observation that membranes composed of the material polyvinylidene fluoride, which normally resemble sheets of white paper, become completely transparent when soaked in a high-concentration urea solution. By tinkering with this solution, Miyawaki and colleagues arrived at ScaleA2, a mixture that achieves the same feat with biological tissues.

ScaleA2 can render a mouse brain essentially transparent within two weeks. This treatment also causes the tissue to swell as a result of water uptake, but the researchers determined that specimens maintain their overall shape and proportions, suggesting that this expansion does not significantly affect the arrangement of the cellular structures being imaged.

In an initial test of their imaging approach, Miyawaki and colleagues found that cells within ScaleA2-treated samples fully retained their fluorescent labels, while tissues treated with BABB yielded greatly diminished signal. More importantly, the transparency induced by ScaleA2 allowed the researchers to visualize far deeper within the brain than before, even when using standard ‘one-photon’ microscopic approaches that are typically vulnerable to scattering and background image interference.

“Although the imaging depth limit of two-photon excitation fluorescence microscopy is usually around 0.7 millimeters in the brain, we were able to image fluorescent neurons with Scale down to a depth of 2 millimeters below the brain surface,” says Miyawaki. By designing a specialized microscope lens, they were able to penetrate still farther, to an unprecedented working distance of 4 millimeters below the brain surface (Fig. 2). The level of detail obtained with ScaleA2 proved sufficient for the researchers to map axonal connections between neurons in the corpus callosum, the bridge between the brain’s hemispheres, and also allowed them to analyze the interaction between neural stem cells and the vasculature within the developing mouse brain.

Since not all specimens are created equal, Miyawaki and colleagues also experimented with alternative Scale formulations for specialized imaging applications. One of these, ScaleU2, necessitates longer sample incubation, but results in less tissue expansion so may offer advantages for use with embryonic samples or other fragile tissues. In a preliminary experiment on 13.5-day-old mouse embryos, the researchers used ScaleU2 to visualize regions of active cell division in the diencephalon—a part of the forebrain.

Importantly, the effects of Scale treatment proved fully reversible, and samples that had recovered from clearing proved indistinguishable from their uncleared counterparts, reaffirming the minimal impact of this treatment on tissue structure.

A clear view of the future

Some researchers have designed especially ambitious strategies for neural circuit mapping, such as the ‘Brainbow’ mouse developed at Harvard Medical School, which combines large numbers of different fluorescent proteins to turn the mouse brain into a dazzling light show in which virtually every neuron stands out clearly from its neighbors. Miyawaki believes Scale should prove highly complementary to such efforts. “All the fluorescent proteins we’ve tested so far are resistant to high concentrations of urea, and should be usable,” he says, “and so this approach should be compatible with Brainbow.”

His team is already engaged in collaborations to apply Scale to targeted investigations in mice. Although the work described to date has focused on genetically expressed fluorescent markers, this approach should also be compatible with other labeling methodologies. Once such techniques have been developed, Scale should prove effective for working with larger tissue samples obtained from species that are not readily amenable to genetic modification, such as primates.

The biggest limitation seen by Miyawaki at present is the need to work with ‘dead’ tissue, but he suggests that even this may change. “Scale is currently limited to fixed biological samples,” he says, “but at some point in the future, there may be ‘live Scale’.”

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Health and Medicine:

nachricht Observing the cell's protein factories during self-assembly
15.06.2018 | Charité - Universitätsmedizin Berlin

nachricht Scientists unravel molecular mechanisms of Parkinson's disease
13.06.2018 | The Francis Crick Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>