Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Milestone reached in work to build replacement kidneys in the lab

09.09.2014

Regenerative medicine researchers at Wake Forest Baptist Medical Center have addressed a major challenge in the quest to build replacement kidneys in the lab. Working with human-sized pig kidneys, the scientists developed the most successful method to date to keep blood vessels in the new organs open and flowing with blood. The work is reported in journal Technology.

"Until now, lab-built kidneys have been rodent-sized and have functioned for only one or two hours after transplantation because blood clots developed," said Anthony Atala, M.D., director and professor at the Wake Forest Institute for Regenerative Medicine and a senior author on the study.

"In our proof-of-concept study, the vessels in a human-sized pig kidney remained open during a four-hour testing period. We are now conducting a longer-term study to determine how long flow can be maintained."

If proven successful, the new method to more effectively coat the vessels with cells (endothelial) that keep blood flowing smoothly, could potentially be applied to other complex organs that scientists are working to engineer, including the liver and pancreas.

... more about:
»Medicine »blood »endothelial »kidneys »organs »replacement

The current research is part of a long-term project to use pig kidneys to make support structures known as "scaffolds" that could potentially be used to build replacement kidneys for human patients with end-stage renal disease. Scientists first remove all animal cells from the organ – leaving only the organ structure or "skeleton." A patient's own cells would then be placed in the scaffold, making an organ that the patient theoretically would not reject.

The cell removal process leaves behind an intact network of blood vessels that can potentially supply the new organ with oxygen. However, scientists working to repopulate kidney scaffolds with cells have had problems coating the vessels and severe clotting has generally occurred within a few hours after transplantation.

The Wake Forest Baptist scientists took a two-pronged approach to address this problem. First, they evaluated four different methods of introducing new cells into the main vessels of the kidney scaffold. They found that a combination of infusing cells with a syringe, followed by a period of pumping cells through the vessels at increasing flow rates, was most effective.

Next, the research team coated the scaffold's vessels with an antibody designed to make them more "sticky" and to bind endothelial cells. Laboratory and imaging studies -- as well as tests of blood flow in the lab – showed that cell coverage of the vessels was sufficient to support blood flow through the entire kidney scaffold.

The final test of the dual-approach was implanting the scaffolds in pigs weighing 90 to 110 pounds. During a four-hour testing period, the vessels remained open.

"Our cell seeding method, combined with the antibody, improves the attachment of cells to the vessel wall and prevents the cells from being detached when blood flow is initiated," said In Kap Ko, Ph.D., lead author and instructor in regenerative medicine at Wake Forest Baptist.

The scientists said a long-term examination is necessary to sufficiently conclude that blood clotting is prevented when endothelial cells are attached to the vessels.

The scientists said if the new method is proven successful in the long-term, the research brings them an important step closer to the day when replacement kidneys can be built in the lab.

"The results are a promising indicator that it is possible to produce a fully functional vascular system that can deliver nutrients and oxygen to engineered kidneys, as well as other engineered organs," said Ko.

Using pig kidneys as scaffolds for human patients has several advantages, including that the organs are similar in size and that pig heart valves – removed of cells – have safety been used in patients for more than three decades.

###

This study was supported, in part, by Telemedicine and Advanced Technology Research Center at the U.S. Army Medical Research and Materiel Command.

Co-researchers were Mehran Abolbashari, M.D., Jennifer Huling, B.S., Cheil Kim, M.D., Ph.D., Sayed-Hadi Mirmalek-Sani, Ph.D., Mahmoudreza Moradi, M.D., Giuseppe Orlando, M.D., John D. Jackson, Ph.D., Tamer Aboushwareb, M.D., Shay Soker, Ph.D., and Anthony Atala, M.D., all with

Wake Forest Baptist Medical Center is a fully integrated academic medical center located in Winston-Salem, North Carolina. The institution comprises the medical education and research components of Wake Forest School of Medicine, the integrated clinical structure and consumer brand Wake Forest Baptist Health, which includes North Carolina Baptist Hospital and Brenner Children's Hospital, the creation and commercialization of research discoveries into products that benefit patients and improve health and wellness, through Wake Forest Innovations, Wake Forest Innovation Quarter, a leading center of technological discovery, development and commercialization, as well as a network of affiliated community-based hospitals, physician practices, outpatient services and other medical facilities. Wake Forest School of Medicine is ranked among the nation's best medical schools and is a leading national research center in fields such as regenerative medicine, cancer, neuroscience, aging, addiction and public health sciences. Wake Forest Baptist's clinical programs have consistently ranked as among the best in the country by U.S. News & World Report for the past 20 years.

Karen Richardson | Eurek Alert!

Further reports about: Medicine blood endothelial kidneys organs replacement

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>