Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New microscope decodes complex eye circuitry

10.03.2011
Retinal ganglion cells can recognise directions thanks to amacrine cells

The properties of optical stimuli need to be conveyed from the eye to the brain. To do this efficiently, the relevant information is extracted by pre-processing in the eye.


Cells and synapses reconstructed from serial block face electron microscopy data. A single starburst amacrine cell (yellow, note synaptic varicosities) and two direction-selective ganglion cells (green). Even though there is substantial dendritic overlap with both cells, all connections (magenta) go to the right ganglion cell. © Kevin Briggman

For example, some of the so-called retinal ganglion cells, which transmit visual information to the brain via the optic nerve, only react to light stimuli moving in a particular direction. This direction selectivity is generated by inhibitory interneurons that influence the activity of the ganglion cells through their synapses. Using a novel microscopy method developed at the Institute, scientists from the Max Planck Institute for Medical Research in Heidelberg have now discovered that the distribution of the synapses between ganglion cells and interneurons follows highly specific rules. Only those dendrites that extend from the cell body of the amacrine cell in a direction opposite to the preferred direction of the ganglion cell connect with the ganglion cell.

The sensory cells in the retina of the mammalian eye convert light stimuli into electrical signals and transmit them via downstream interneurons to the retinal ganglion cells which, in turn, forward them to the brain. The interneurons are connected to each other in such a way that the individual ganglion cells receive visual information from a circular area of the visual field known as the receptive field. Some ganglion cells are only activated, for example, when light falls on the centre of their receptive fields and the edge remains dark (ON cells). The opposite is the case for other ganglion cells (OFF cells). And there are also ganglion cells that are activated by light that sweeps across their receptive fields in a particular direction; motion in the opposite (null-) direction inhibits activation.

Starburst amacrine cells, which modulate the activity of the ganglion cells through inhibitory synaptic connections, play an important role in this direction selectivity. The same research group at the Max Planck Institute in Heidelberg demonstrated a number of years ago that starburst amacrine cells are activated by moving stimuli. Each branch in the circular dendrite tree reacts preferentially to stimuli that move away from the cell body; movements in the opposite direction, towards the cell body, inhibit its activity. In the central area around the cell body dendrites function only as receivers of synaptic signals, while the dendrites on the periphery act as transmitters as well – and, therefore, double as axons. Whether these dendrites cause the direction selectivity in the ganglion cells or whether the ganglion cells “compute” it using other signals was unclear up to now.

Max Planck researchers Kevin Briggman, Moritz Helmstaedter and Winfried Denk have now discovered that, although the cells themselves are symmetrical, the synapses between retinal ganglion cells and starburst amacrine cells are distributed asymmetrically: seen from the ganglion cell, the starburst cell dendrites connected with it run in the direction opposite to the preferred direction of motion. “Ganglion cells prefer amacrine-cell dendrites that run along the null-direction,” says Winfried Denk.

According to previous studies by Winfried Denk and his research group, the electrical characteristics of the dendrites, which emerge starlike from the cell bodies of amacrine cells, play a crucial role here. The further they are located from the centre of the cell toward the edge, the easier they are to excite; therefore, stimuli are transmitted preferentially in this direction. This mechanism does not require but is helped by inhibitory influences between neighbouring amacrine cells, known as lateral inhibition. “A ganglion cell can thus differentiate between movements from different directions simply by making connections with certain starburst amacrine cell dendrites - namely those that prevent activation of the ganglion cell in null-direction through their inhibitory synapses. These are precisely the amacrine cell dendrites that run along this direction,” explains Winfried Denk.

Functional and structural analysis

This discovery was made possible by combining two different microscopy methods. The scientists succeeded, first, in determining the preferred motion direction of the ganglion cells using a two-photon fluorescence microscope. A calcium-sensitive fluorescent dye indicated in response to which stimuli calcium flows into the cells - a process that signals electrical activity in cells.

They then measured the exact trajectory of all of the dendrites of these ganglion cells and those of connected amacrine cells with the help of a new electron microscopy method known as serial block face electron microscopy. This process enabled them to produce a volumetric image by repeatedly scanning the surface of a tissue sample using the electron beam of a scanning electron microscope. A thin “slice” is shaved off the sample surface after each scan is complete, using an extremely sharp diamond knife. These slices are thinner than 25 nanometers, just about one thousandth of the thickness of a human hair.

The high three-dimensional resolution of this method enabled the scientists to trace the fine, densely packed branched dendrites of retinal neurons and clearly identify the synapses between them. The complete automation of the imaging process enables them to record data sets with thousands and even tens of thousands of sections “while on holiday or attending a conference,” says Winfried Denk. “For the first time, minute cell structures can now be viewed at a high resolution in larger chunks of tissue. This procedure will also play an indispensable role in the clarification of the circuit patterns of all regions of the nervous system in the future.”

Contact
Prof. Dr. Winfried Denk
Max Planck Institute for Medical Research, Heidelberg
Phone: +49 6221 486-335
Fax: +49 6221 486-325
Email: denk@mpimf-heidelberg.mpg.de
Publication reference
Kevin L Briggman, Moritz Helmstaedter, Winfried Denk
Wiring specificity in the direction-selectivity circuit of the retina
Nature, March 10 2011

Prof. Dr. Winfried Denk | EurekAlert!
Further information:
http://www.mpg.de
http://www.mpg.de/1200127/direction_selective_ganglion_cells

More articles from Health and Medicine:

nachricht New study points the way to therapy for rare cancer that targets the young
22.11.2017 | Rockefeller University

nachricht Penn study identifies new malaria parasites in wild bonobos
21.11.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>