Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MicroRNAs hold promise for treating diseases in blood vessels

07.07.2009
A newly discovered mechanism controls whether muscle cells in blood vessels hasten the development of both atherosclerosis and Alzheimer's disease, according to an article published online today in the journal Nature.

The study was led by the Gladstone Institute of Cardiovascular Disease (GICD) in San Francisco, with key contributions from the Aab Cardiovascular Research Institute at the University of Rochester School of Medicine and Dentistry.

Thanks to stem cells, humans develop from a single cell embryo into a complex being with about 250 unique cell types. As the fetus develops, cells divide and multiply (proliferate) in many generations and specialize (differentiate) with each generation until millions of functional cells result (bone, nerve, blood, skin, muscle, etc.). To serve specific roles in the body, some stem cells also switch back and forth between primitive, rapidly proliferating precursors and their mature, functioning, non-proliferating counterparts, a quality called "plasticity."

Among the most "plastic" of cells are vascular smooth muscle cells (VSMC), which form in layers around blood vessels, and by contracting or relaxing, regulate blood pressure. Because VSMC surround blood vessels that are continually becoming clogged by atherosclerosis, they must be ever ready to grow along with the vessel as it attempts, by growing, to remain open to blood flow despite fatty deposits and inflammation. If these efforts fail, heart attack or stoke may occur. Each time a vessel grows to avoid a clog, the VSMC surrounding it must grow too by reverting to their high-growth precursor form. Once a vessel reaches its growth limit, however, the growth that once kept vessels open begins adding to clogs by thickening vessel walls.

Past studies in Rochester have shown that transition of VSMC from fast-proliferating stem cells to mature cells and back is largely controlled by two proteins, myocardin and serum response factor (SRF), as part of a regulatory network that influences many genes. SRF anchors to certain snippets of DNA, while myocardin turns on the genes to which SRF sticks. Most of the genes turned on by myocardin/SRF in VSMC are needed for normal function. When levels of myocardin decrease, as they do for some reason in vascular diseases like atherosclerosis, VSMC no longer work normally and vessel thickening ensues. For this reason the field has sought urgently to learn how myocardin levels are controlled, but without success.

Enter a research team led by Deepak Srivastava, M.D, director of GICD, world leaders in the characterization of microRNAs (miRNAs). These small, single-stranded molecules of ribonucleic acid (RNA), discovered in the Victor Ambros lab in 1993, fine-tune protein levels in all cells of the body. The GICD team discovered that miRNAs control VSMC differentiation and growth.

Gene expression is the process where information encoded in genes is converted into proteins, the workhorse molecules that make up the body's structures and carry its signals. While genes are encoded in chains of deoxyribonucleic acids (DNA), they are copied into chains of messenger ribonucleic acids (mRNA) that are "read" by cellular machines that build proteins. microRNAs bind to messenger RNAs, usually targeting them for breakdown or rendering them unfit to serve as templates for protein production.

The current study found that two miRNAs in particular, miR-143 and miR-145, are part of a molecular switch that determines whether VSMC persist as high-growth precursors or mature into functioning muscle cells. miR-143 was found to block the expression of factors that promote proliferation by VSMC precursors. Surprisingly, miR-145 activated the expression of myocardin, which maintains VSMC in their mature form over their high-growth form.

In a mouse model, expression of miR-143 and miR-145 was reduced to almost nothing where disease-related proliferation of VSMC had thickened blood vessel walls. These findings suggest that miR-143 and miR-145 – in partnership with myocardin – maintain the normal balance between mature VSMC and their precursors. Thus, researchers believe the drop in miR-143 and miR-145 levels seen in disease settings contributes greatly to vessel wall thickening, but that theory will need to be confirmed by further studies.

In addition, Rochester investigators found that myocardin and SRF activate genes that may influence the rate at which the brain can remove amyloid beta, the toxic protein that builds up in blood vessels in the brains of patients with Alzheimer's disease. In a February 2009 article in the journal Nature Cell Biology, University of Rochester investigator, Berislav Zlokovic, M.D., Ph.D. found that when SRF and myocardin are active, amyloid beta accumulates in VSMC lining blood vessels. The discovery that miR-145 encourages the expression of myocardin could explain why myocardin may occur in higher levels in Alzheimer's disease, which is turning out to be a problem of "vascular plumbing."

"The finding that a microRNA controls levels of myocardin, the master regulator of VSMC identity and function, forms the starting point in efforts to design new classes of treatment for vascular diseases that represent leading causes of death," said Joseph M. Miano, Ph.D., associate professor within the Aab Cardiovascular Research Institute at the University of Rochester Medical Center, and a study author. He and Srivastava trained together under the direction of renowned muscle biologist Eric Olson at M.D. Anderson Cancer Center in the early 1990s. Miano was also a co-author of the paper on Alzheimer's with Zlokovic. "One of the most important of potential applications for this work would be to deliver miR-145 into vessel walls as a way to normalize levels of myocardin, which would counter vessel wall thickening."

Rochester provided GICD with samples of blood vessels containing lesions with dramatically reduced levels of myocardin. GICD then looked at levels of miR-143 and miR-145 in this disease setting. The team in Rochester also did experiments to show that local delivery of miR-145 in mouse blood vessels leads to elevated expression of myocardin and its target genes.

Along with senior author Srivastava, the effort at Gladstone, and within the departments of Pediatrics and Biochemisty & Biophysics at the University of California at San Francisco, was led by first author Kimberly Cordes, Neil Sheehy, Mark White, Emily Berry, Sarah Morton Alecia Muth and Kathryn Ivey. Ting-Hein Lee, a post-doctoral fellow in Miano's lab, also contributed within the University of Rochester School of Medicine and Dentistry. The study was funded in part by the National Institutes of Health.

Greg Williams | EurekAlert!
Further information:
http://www.urmc.rochester.edu

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>