Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MicroRNAs hold promise for treating diseases in blood vessels

07.07.2009
A newly discovered mechanism controls whether muscle cells in blood vessels hasten the development of both atherosclerosis and Alzheimer's disease, according to an article published online today in the journal Nature.

The study was led by the Gladstone Institute of Cardiovascular Disease (GICD) in San Francisco, with key contributions from the Aab Cardiovascular Research Institute at the University of Rochester School of Medicine and Dentistry.

Thanks to stem cells, humans develop from a single cell embryo into a complex being with about 250 unique cell types. As the fetus develops, cells divide and multiply (proliferate) in many generations and specialize (differentiate) with each generation until millions of functional cells result (bone, nerve, blood, skin, muscle, etc.). To serve specific roles in the body, some stem cells also switch back and forth between primitive, rapidly proliferating precursors and their mature, functioning, non-proliferating counterparts, a quality called "plasticity."

Among the most "plastic" of cells are vascular smooth muscle cells (VSMC), which form in layers around blood vessels, and by contracting or relaxing, regulate blood pressure. Because VSMC surround blood vessels that are continually becoming clogged by atherosclerosis, they must be ever ready to grow along with the vessel as it attempts, by growing, to remain open to blood flow despite fatty deposits and inflammation. If these efforts fail, heart attack or stoke may occur. Each time a vessel grows to avoid a clog, the VSMC surrounding it must grow too by reverting to their high-growth precursor form. Once a vessel reaches its growth limit, however, the growth that once kept vessels open begins adding to clogs by thickening vessel walls.

Past studies in Rochester have shown that transition of VSMC from fast-proliferating stem cells to mature cells and back is largely controlled by two proteins, myocardin and serum response factor (SRF), as part of a regulatory network that influences many genes. SRF anchors to certain snippets of DNA, while myocardin turns on the genes to which SRF sticks. Most of the genes turned on by myocardin/SRF in VSMC are needed for normal function. When levels of myocardin decrease, as they do for some reason in vascular diseases like atherosclerosis, VSMC no longer work normally and vessel thickening ensues. For this reason the field has sought urgently to learn how myocardin levels are controlled, but without success.

Enter a research team led by Deepak Srivastava, M.D, director of GICD, world leaders in the characterization of microRNAs (miRNAs). These small, single-stranded molecules of ribonucleic acid (RNA), discovered in the Victor Ambros lab in 1993, fine-tune protein levels in all cells of the body. The GICD team discovered that miRNAs control VSMC differentiation and growth.

Gene expression is the process where information encoded in genes is converted into proteins, the workhorse molecules that make up the body's structures and carry its signals. While genes are encoded in chains of deoxyribonucleic acids (DNA), they are copied into chains of messenger ribonucleic acids (mRNA) that are "read" by cellular machines that build proteins. microRNAs bind to messenger RNAs, usually targeting them for breakdown or rendering them unfit to serve as templates for protein production.

The current study found that two miRNAs in particular, miR-143 and miR-145, are part of a molecular switch that determines whether VSMC persist as high-growth precursors or mature into functioning muscle cells. miR-143 was found to block the expression of factors that promote proliferation by VSMC precursors. Surprisingly, miR-145 activated the expression of myocardin, which maintains VSMC in their mature form over their high-growth form.

In a mouse model, expression of miR-143 and miR-145 was reduced to almost nothing where disease-related proliferation of VSMC had thickened blood vessel walls. These findings suggest that miR-143 and miR-145 – in partnership with myocardin – maintain the normal balance between mature VSMC and their precursors. Thus, researchers believe the drop in miR-143 and miR-145 levels seen in disease settings contributes greatly to vessel wall thickening, but that theory will need to be confirmed by further studies.

In addition, Rochester investigators found that myocardin and SRF activate genes that may influence the rate at which the brain can remove amyloid beta, the toxic protein that builds up in blood vessels in the brains of patients with Alzheimer's disease. In a February 2009 article in the journal Nature Cell Biology, University of Rochester investigator, Berislav Zlokovic, M.D., Ph.D. found that when SRF and myocardin are active, amyloid beta accumulates in VSMC lining blood vessels. The discovery that miR-145 encourages the expression of myocardin could explain why myocardin may occur in higher levels in Alzheimer's disease, which is turning out to be a problem of "vascular plumbing."

"The finding that a microRNA controls levels of myocardin, the master regulator of VSMC identity and function, forms the starting point in efforts to design new classes of treatment for vascular diseases that represent leading causes of death," said Joseph M. Miano, Ph.D., associate professor within the Aab Cardiovascular Research Institute at the University of Rochester Medical Center, and a study author. He and Srivastava trained together under the direction of renowned muscle biologist Eric Olson at M.D. Anderson Cancer Center in the early 1990s. Miano was also a co-author of the paper on Alzheimer's with Zlokovic. "One of the most important of potential applications for this work would be to deliver miR-145 into vessel walls as a way to normalize levels of myocardin, which would counter vessel wall thickening."

Rochester provided GICD with samples of blood vessels containing lesions with dramatically reduced levels of myocardin. GICD then looked at levels of miR-143 and miR-145 in this disease setting. The team in Rochester also did experiments to show that local delivery of miR-145 in mouse blood vessels leads to elevated expression of myocardin and its target genes.

Along with senior author Srivastava, the effort at Gladstone, and within the departments of Pediatrics and Biochemisty & Biophysics at the University of California at San Francisco, was led by first author Kimberly Cordes, Neil Sheehy, Mark White, Emily Berry, Sarah Morton Alecia Muth and Kathryn Ivey. Ting-Hein Lee, a post-doctoral fellow in Miano's lab, also contributed within the University of Rochester School of Medicine and Dentistry. The study was funded in part by the National Institutes of Health.

Greg Williams | EurekAlert!
Further information:
http://www.urmc.rochester.edu

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>