Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microneedle patch could replace standard tuberculosis skin test

27.08.2013
Each year, millions of people in the United States get a tuberculosis skin test to see if they have the infection that still affects one-third of the world’s population.

But the standard diagnostic test is difficult to give, because a hypodermic needle must be inserted at a precise angle and depth in the arm to successfully check for tuberculosis.


Marco Rolandi, UW

A chitin microneedle patch tested on human skin.


Marco Rolandi, UW

Comparison of a microneedle tuberculosis test with a traditional test administered with a hypodermic needle. The lower images show needle-depth problems that can occur with the conventional test.

Now, a team led by University of Washington engineers has created a patch with tiny, biodegradable needles that can penetrate the skin and precisely deliver a tuberculosis test. The researchers published their results online Aug. 26 in the journal Advanced Healthcare Materials.

“With a microneedle test there’s little room for user error, because the depth of delivery is determined by the microneedle length rather than the needle-insertion angle,” said senior author Marco Rolandi, a UW assistant professor of materials science and engineering. “This test is painless and easier to administer than the traditional skin test with a hypodermic needle.”

A tuberculosis test is a common precautionary measure for teachers, health care professionals and international travelers. The bacterial infection usually attacks the lungs and can live in an inactive state for years in the body. A diagnostic test involves an injection in a person’s arm. Within two or three days, a swollen, firm bump will appear if an infection is present.

Rolandi’s lab and collaborators at the Infectious Disease Research Institute in Seattle believe this is the first time microneedles made from biomaterials have been used as a diagnostic tool for tuberculosis. They say their test will be easier to use, less painful and has the potential to be more successful than the standard tuberculosis skin test.

The researchers tested the patch on guinea pigs and found that after the microneedles were inserted using the patch, the skin reaction associated with having a tuberculosis infection was the same as when using the standard hypodermic needle test. A microneedle patch test has potential as a simpler, more reliable option than the traditional tuberculosis test for children who are needle-shy, or in developing countries where medical care is limited, Rolandi said.

“It’s like putting on a bandage,” Rolandi said. “As long as the patch is applied on the skin, the test is always delivered to the same depth underneath the skin.”

Comparison of a microneedle tuberculosis test with a traditional test administered with a hypodermic needle. The lower images show needle-depth problems that can occur with the conventional test.

With the standard test, if a hypodermic needle is inserted at the wrong angle, the solution to check for tuberculosis is injected too deep or too shallow into the skin, and the test fails.

Microneedles have been used in recent years as a painless alternative to hypodermic needles to deliver drugs to the body. Microneedles on a patch can be placed on an arm or leg, which then create small holes in the skin’s outermost layer, allowing the drugs coated on each needle to diffuse into the body.

Microneedles are made from silicon, metals and synthetic polymers, and most recently of natural, biodegradable materials such as silk and chitin, a material found in hard outer shells of some insects and crustaceans.

The UW team developed microneedles made from chitin that are each 750 micrometers long, or about one-fortieth of an inch. Each needle tip is coated with purified protein derivative, the material used for testing for tuberculosis. The researchers found that these microneedles were strong enough to penetrate the skin and deliver the tuberculosis test.

“It’s a great application of this technology and I hope it will become a commercial product,” said paper co-author Darrick Carter, a biochemist and a vice president at the Infectious Disease Research Institute.

The researchers will continue developing the microneedle tuberculosis test and plan to test it next on humans. They also hope to develop different diagnostic tests using microneedles, including allergy tests.

Other co-authors are Jungho Jin, a UW postdoctoral researcher in materials science and engineering, and Valerie Reese and Rhea Coler, both at the Infectious Disease Research Institute.

The research was funded by the Coulter Foundation, the UW Center for Commercialization, the Washington Research Foundation, a 3M untenured faculty award and the Infectious Disease Research Institute.

For more information, contact Rolandi at rolandi@uw.edu or 206-221-0309.

Michelle Ma | EurekAlert!
Further information:
http://www.uw.edu

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>