Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microneedle patch could replace standard tuberculosis skin test

27.08.2013
Each year, millions of people in the United States get a tuberculosis skin test to see if they have the infection that still affects one-third of the world’s population.

But the standard diagnostic test is difficult to give, because a hypodermic needle must be inserted at a precise angle and depth in the arm to successfully check for tuberculosis.


Marco Rolandi, UW

A chitin microneedle patch tested on human skin.


Marco Rolandi, UW

Comparison of a microneedle tuberculosis test with a traditional test administered with a hypodermic needle. The lower images show needle-depth problems that can occur with the conventional test.

Now, a team led by University of Washington engineers has created a patch with tiny, biodegradable needles that can penetrate the skin and precisely deliver a tuberculosis test. The researchers published their results online Aug. 26 in the journal Advanced Healthcare Materials.

“With a microneedle test there’s little room for user error, because the depth of delivery is determined by the microneedle length rather than the needle-insertion angle,” said senior author Marco Rolandi, a UW assistant professor of materials science and engineering. “This test is painless and easier to administer than the traditional skin test with a hypodermic needle.”

A tuberculosis test is a common precautionary measure for teachers, health care professionals and international travelers. The bacterial infection usually attacks the lungs and can live in an inactive state for years in the body. A diagnostic test involves an injection in a person’s arm. Within two or three days, a swollen, firm bump will appear if an infection is present.

Rolandi’s lab and collaborators at the Infectious Disease Research Institute in Seattle believe this is the first time microneedles made from biomaterials have been used as a diagnostic tool for tuberculosis. They say their test will be easier to use, less painful and has the potential to be more successful than the standard tuberculosis skin test.

The researchers tested the patch on guinea pigs and found that after the microneedles were inserted using the patch, the skin reaction associated with having a tuberculosis infection was the same as when using the standard hypodermic needle test. A microneedle patch test has potential as a simpler, more reliable option than the traditional tuberculosis test for children who are needle-shy, or in developing countries where medical care is limited, Rolandi said.

“It’s like putting on a bandage,” Rolandi said. “As long as the patch is applied on the skin, the test is always delivered to the same depth underneath the skin.”

Comparison of a microneedle tuberculosis test with a traditional test administered with a hypodermic needle. The lower images show needle-depth problems that can occur with the conventional test.

With the standard test, if a hypodermic needle is inserted at the wrong angle, the solution to check for tuberculosis is injected too deep or too shallow into the skin, and the test fails.

Microneedles have been used in recent years as a painless alternative to hypodermic needles to deliver drugs to the body. Microneedles on a patch can be placed on an arm or leg, which then create small holes in the skin’s outermost layer, allowing the drugs coated on each needle to diffuse into the body.

Microneedles are made from silicon, metals and synthetic polymers, and most recently of natural, biodegradable materials such as silk and chitin, a material found in hard outer shells of some insects and crustaceans.

The UW team developed microneedles made from chitin that are each 750 micrometers long, or about one-fortieth of an inch. Each needle tip is coated with purified protein derivative, the material used for testing for tuberculosis. The researchers found that these microneedles were strong enough to penetrate the skin and deliver the tuberculosis test.

“It’s a great application of this technology and I hope it will become a commercial product,” said paper co-author Darrick Carter, a biochemist and a vice president at the Infectious Disease Research Institute.

The researchers will continue developing the microneedle tuberculosis test and plan to test it next on humans. They also hope to develop different diagnostic tests using microneedles, including allergy tests.

Other co-authors are Jungho Jin, a UW postdoctoral researcher in materials science and engineering, and Valerie Reese and Rhea Coler, both at the Infectious Disease Research Institute.

The research was funded by the Coulter Foundation, the UW Center for Commercialization, the Washington Research Foundation, a 3M untenured faculty award and the Infectious Disease Research Institute.

For more information, contact Rolandi at rolandi@uw.edu or 206-221-0309.

Michelle Ma | EurekAlert!
Further information:
http://www.uw.edu

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>