Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel microfluidic HIV test is quick and cheap

19.07.2010
Microfluidic device uses antibodies to 'capture' white blood cells called T cells affected by HIV

UC Davis biomedical engineer Prof. Alexander Revzin has developed a "lab on a chip" device for HIV testing. Revzin's microfluidic device uses antibodies to "capture" white blood cells called T cells that are affected by HIV. In addition to physically binding these cells the test detects the types and levels of inflammatory proteins (cytokines) released by the cells.

Revzin's team collaborated with UCLA electrical engineer Prof. Aydogan Ozcan to integrate an antibody microarray with a lensfree holographic imaging device that takes only seconds to count the number of captured cells and amount of secreted cytokine molecules. The test returns results six to twelve times faster than traditional approaches and tests six parameters simultaneously, based on a small blood sample. The Revzin team published the results of their experiments in the May 2010 issue of Analytical Chemistry.

With further refinements, the test will have wide potential use for multi-parametric blood analysis performed at the point of care in the developing world and resource-poor areas. Its affordability will also make it an attractive option in wealthier areas. Revzin has filed for a patent and is looking for ways to bring his test into clinical use.

"In addition to HIV testing and monitoring, this device will be useful for blood transfusions, where the safety of blood is frequently in question," Revzin says.

The most accurate and effective way to diagnose and monitor HIV infection involves counting two types of T-cells, calculating the ratio between the two types of T-cells, and measuring cytokines. Scientists do this using a method called flow cytometry that requires an expensive machine and several highly trained specialists. Healthcare workers and AIDS activists in the developing world have called for less expensive, more easily performed tests.

"While the point of care field focuses on detection of single parameter (e.g. CD4 counts), we believe that the simplicity of the test need not compromise information content. So, we set out to develop a test that could be simple and inexpensive but would provide several parameters based on a single injection of a small blood volume," explains Revzin.

The HIV test addresses two distinct challenges of blood analysis: 1) capturing the desired cell type from blood, which contains multiple cell types, and 2) connecting the desired blood cell type with secreted cytokines. The test consists of polymer film imprinted with an array of miniature spots. Each spot contains antibodies specific to the two kinds of T-cells (CD4 and CD8) and three types of cytokines printed in the same array. When the blood flowed across the antibody spots, T cells stopped and stuck on the spots.

Each T-cell type was captured next to antibody spots specific for the cytokines they might produce. When antibodies activated the cells, spots adjacent to the cells captured the cytokines they secreted. This connected a specific T-cell subset to its secreted cytokines. The visible color intensity of antibody spots revealed differences in cytokine production by T-cells. Prof. Ozcan's lensfree on-chip imaging allowed the scientists to rapidly image and count T-cell arrays without the use of any lenses or mechanical scanning. Analysis of CD4 and CD8 T-cell numbers, the CD4/CD8 ratio and three secreted cytokines took only seconds.

In the future, Prof. Revzin envisions adding microarrays to the test that can detect proteins from the HIV and hepatitis C viruses.

Lensfree Holographic Imaging of Antibody Microarrays for High-Throughput Detection of Leukocyte Numbers and Function Gulnaz Stybayeva, Onur Mudanyali, Sungkyu Seo, Jaime Silangcruz, Monica Macal, Erlan Ramanculov, Satya Dandekar, Anthony Erlinger, Aydogan Ozcan, and Alexander Revzin Analytical Chemistry, Vol. 82, No. 9, May 1, 2010 3736�.

Holly Ober | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

Decoding cement's shape promises greener concrete

08.12.2016 | Materials Sciences

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>