Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Microdevice Enables Culture of Rare Circulating Tumor Cells from Blood

25.04.2012
Ability to culture rare tumor cells isolated from blood could help improve patient response to therapy

A research collaboration between the Wyss Institute for Biologically Inspired Engineering at Harvard University and Children’s Hospital Boston has created a microfluidic device that can harvest rare circulating tumor cells (CTCs) from blood to enable their expansion in culture for analysis.

These cells, which have detached from a primary cancer site and often create a secondary -- or metastasized -- tumor, hold an extraordinary amount of information regarding patient-specific drug sensitivity, cancer progression, and patient response to therapy. Such information could help clinicians treat patients, but it has not been easily accessed due to the difficulty of isolating CTCs and expanding them in culture for subsequent analysis.

In alleviating this problem, the new technology has the potential to become a valuable tool for cancer diagnosis and personalized treatment. The research findings appear online in the journal Lab on a Chip.

Wyss Founding Director, Donald Ingber, M.D., Ph.D., and Wyss Postdoctoral Fellow Joo Kang, Ph.D., led the research team. Ingber is the Judah Folkman Professor of Vascular Biology at Harvard Medical School (HMS) and the Vascular Biology Program at Children's Hospital Boston, and Professor of Bioengineering at Harvard's School of Engineering and Applied Sciences. Kang is a Research Fellow at Children’s Hospital. Also on the team were Wyss Postdoctoral Fellow Mathumai Kanapathipillai; Children’s Hospital Research Fellow Silva Krause and Research Associate Heather Tobin; and Akiko Mammoto, an Instructor in Surgery at HMS and Children’s Hospital.

This novel approach for capturing and culturing CTCs combines micromagnetics and microfluidics within a cell-separation device, about the size of a credit card, in which microfluidic channels have been molded into a hard clear polymer. As blood flows through these channels, magnetic beads that have been coated to selectively stick to the CTCs are used to separate them from the other cells in the blood. The dimensions of the channels have been designed to protect CTCs from mechanical stresses that might alter their structure or biochemistry, as well as to maximize the number of CTCs that can be captured.

In the lab, the new approach demonstrated extremely high efficiency by capturing more than 90 percent of CTCs from the blood of mice with breast cancer. Of particular significance was the fact that the captured CTCs were able to be grown and expanded in culture. These intact living tumor cells could be used for additional testing and molecular analysis, for example, in screening drugs to meet the personal needs of individual patients in the future. Further testing found that the device is sensitive enough to detect the sudden increases in the number of CTCs that signal a cancer’s metastatic transition and could therefore alert clinicians to possible disease progression.

The Wyss Institute/Children’s Hospital team carried out their studies with one common type of breast cancer. But the same device could be used to address a wide range of tumor types as well as applications beyond cancer, such as collecting circulating stem cells or endothelial progenitor cells from the blood and growing them for use in organ repair, in the future.

For more information, contact Twig Mowatt
Twig.mowatt@wyss.harvard.edu


About the Wyss Institute for Biologically Inspired Engineering at Harvard University

The Wyss Institute for Biologically Inspired Engineering at Harvard University (http://wyss.harvard.edu) uses Nature’s design principles to develop bioinspired materials and devices that will transform medicine and create a more sustainable world. Working as an alliance among Harvard’s Schools of Medicine, Engineering, and Arts & Sciences, and in partnership with Beth Israel Deaconess Medical Center, Brigham and Women’s Hospital, Children’s Hospital Boston, Dana Farber Cancer Institute, Massachusetts General Hospital, the University of Massachusetts Medical School, Spaulding Rehabilitation Hospital, and Boston University, the Institute crosses disciplinary and institutional barriers to engage in high-risk research that leads to transformative technological breakthroughs. By emulating Nature’s principles for self-organizing and self-regulating, Wyss researchers are developing innovative new engineering solutions for healthcare, energy, architecture, robotics, and manufacturing. These technologies are translated into commercial products and therapies through collaborations with clinical investigators, corporate alliances, and new start-ups.

Twig Mowatt | EurekAlert!
Further information:
http://www.wyss.harvard.edu

More articles from Health and Medicine:

nachricht TSRI researchers develop new method to 'fingerprint' HIV
29.03.2017 | Scripps Research Institute

nachricht Periodic ventilation keeps more pollen out than tilted-open windows
29.03.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>