Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The microbes you inhale on the New York City subway

25.04.2013
The microbial population in the air of the New York City subway system is nearly identical to that of ambient air on the city streets.

This research, published ahead of print in the journal Applied and Environmental Microbiology, establishes an important baseline, should it become necessary to monitor the subway's air for dispersal of potentially dangerous microbes.

Also, the combination of new methodologies in the study, including fast collection of aerosols and rapid sequencing technology, provide an efficient means for monitoring which was not previously available.

The results "are strong testimony for the efficiency of the train pumping system for ventilation," says principal investigator Norman R. Pace of the University of Colorado, Boulder. The wind one feels while walking across a subway grate as the subway clatters beneath also demonstrates just how effective that system is, he says. The only obvious differences in the subway's microbial population are the somewhat higher proportion of skin microbiota, and the doubled density of the fungal population, which Pace suggests may be due to rotting wood. "I was impressed by the similarity of [subway] and outdoor air," he says.

The researchers used a high tech mechanism to collect air at around 300 liters per minute (L/min), a big jump on the previous state of the art, which swallowed 12 L/min. That enabled collecting sufficient volume of air—a couple of cubic meters—to take the bacterial census within 20 minutes, instead of after "hours," says Pace. And analysis by sequencing is far faster and more thorough then using culture.

Pace notes that until now, the microbial content of subway air was unknown, and that the microbiology of indoor air is an emerging field of scientific inquiry. His research was funded by the Alfred P. Sloan Foundation, through its Microbiology of the Built Environment program, which has made 64 grants totaling $28 million to date.

"While it is difficult to predict what will be discovered on the frontier of scientific inquiry, the opportunity exists to better understand these complex microbial ecosystems and how they affect health and the environment. We expect that someday this knowledge will influence design and construction practices and other industrial processes," says Paula Olsiewski, program director, Alfred P. Sloan Foundation.

A copy of the manuscript can be found online at http://bit.ly/asmtip0413c. Formal publication is scheduled for the July 2013 issue of Applied and Environmental Microbiology.

(C.E. Robertson, L.K. Baumgartner, J.K. Harris, K.L. Peterson, M.J. Stevens, D.N. Frank, and N.R. Pace, 2013. Culture-independent analysis of aerosol microbiology in a metropolitan subway system. Appl. Environ. Microbiol. Published ahead of print 29 March 2013 ,doi:10.1128/AEM.00331-13)

Applied and Environmental Microbiology is a publication of the American Society for Microbiology (ASM). The ASM is the largest single life science society, composed of over 39,000 scientists and health professionals. Its mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>