Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mexico-US Collaboration Launched

Mexico-US collaboration launched to study major human diseases / Carlos Slim Institute of Health to fund genomic research on cancer, type 2 diabetes, and a form of kidney disease

Mexican business leader Carlos Slim Helú today announced the launch of a major research project in genomic medicine that will help accelerate progress in public health in Mexico and around the world.

The project will be carried out by the Carlos Slim Institute of Health in partnership with the Broad Institute of MIT and Harvard and the National Institute for Genomic Medicine of the Mexican Secretariat of Health. The major goal is to understand the genomic basis of cancer in worldwide populations and of type 2 diabetes in Mexican and Latin American populations.

The project, called Slim Initiative for Genomic Medicine, will last three years and will receive US $65M in support from the Carlos Slim Institute of Health. It will leverage the Broad Institute’s expertise and capabilities in the most advanced technologies in genomic sequencing.

The project also involves the training of Mexican experts under the leadership of the National Institute of Genomic Medicine of the Mexican Secretariat of Health, the leading institution in genomic research in Latin America.

The findings of this research will help accelerate both the prevention of disease as well as the development of improved therapies in Mexico and beyond.

Referring to the importance of the project, Carlos Slim said, “I am convinced that only through genomics will we be able to face the costly burden of illnesses that strain the budgets of even the richest countries.”

“Carlos Slim is making a visionary commitment to public health in the Americas in two ways,” said Dr. Eric S. Lander, director and president of the Broad Institute of MIT and Harvard. “First, in recognizing that progress in public health must be built on a foundation of scientific understanding of the genetic basis of disease. Second, in recognizing that deepening the scientific ties between the US and Mexico can have great benefits for both countries. We look forward to making common cause with our colleagues in Mexico.”

The research project will make use of new technologies for decoding or “sequencing” DNA, which have made it possible for researchers to study DNA more rapidly and at a lower cost than ever before. In cancer, the scientists will create catalogs of the genetic abnormalities (called “mutations”) that occur across different cancer types. Such knowledge aims to reveal key genetic weaknesses that can be exploited by new cancer therapies and to identify which patients are most likely to respond to specific cancer drugs.

In type 2 diabetes, the researchers will also assemble systematic descriptions of the genetic factors underlying the disease, with a special focus on Latin American populations. Diabetes is among the most common inherited diseases in Latin America, yet a deep knowledge of the genetic risk factors in the region’s populations is lacking. A profound understanding of these factors is needed in order to foster prevention, treatment and control.

During the three years of the project, major findings will be publicly announced. In order to guarantee that the project benefits science and the population in general, the main recipient of its findings will be the National Institute for Genomic Medicine.

To supervise the scientific progress of the project a Scientific Advisory Board has been established. It is composed of renowned scientists from around the world with vast experience in the fields of cancer, diabetes, and genomic science.

The Scientific Advisory Board members include (in alphabetical order):

Carlos Bustamante
Professor, Department of Genetics, Stanford School of Medicine
Thomas Hudson
President and Scientific Director of Ontario’s Institute for Cancer Research
Gerardo Jiménez Sánchez
Professor of genomic medicine at the National Autonomous University of Mexico, Advisor to the OECD’s Working Group on Biotechnology and Scientific Director of BioFields
David Nathan
Director of the Center of Diabetes and Director of the Center for General Clinical Research, Massachusetts General Hospital
Guillermo Ruiz Palacios
Head of the Infection Diseases Department of the Salvador Zuribán National Institute of Medical Sciences and Nutrition, Mexican Secretariat of Health
Xavier Soberón
General Director of the National Institute of Genomic Medicine, Mexican Secretariat of Health
About the Broad Institute of MIT and Harvard
The Eli and Edythe L. Broad Institute of MIT and Harvard was founded in 2003 to empower this generation of creative scientists to transform medicine with new genome-based knowledge. The Broad Institute seeks to describe all the molecular components of life and their connections; discover the molecular basis of major human diseases; develop effective new approaches to diagnostics and therapeutics; and disseminate discoveries, tools, methods, and data openly to the entire scientific community.

Founded by MIT, Harvard and its affiliated hospitals, and the visionary Los Angeles philanthropists Eli and Edythe L. Broad, the Broad Institute includes faculty, professional staff, and students from throughout the MIT and Harvard biomedical research communities and beyond, with collaborations spanning over a hundred private and public institutions in more than 40 countries worldwide. For further information about the Broad Institute, go to

About the Carlos Slim Health Institute
The Carlos Slim Health Institute was created in 2007 by the initiative of Mr. Carlos Slim Helú for the development and funding of programs aimed at contributing to the solution of the principal health problems in Latin America and the Caribbean under an innovative and human spirit and with a clear concern for the neediest populations.

The Institute contributes to cover the demand of services by spurring the creation of primary health care units; it also facilitates the approximation of health resources to the population via communication technology that serves as information, accompaniment and contact means, and through leading-edge educational communication actions it also encourages people and populations to participate in their own welfare.

In addition, the Institute also provides support to other not-for-profit organizations that promote people’s welfare by favoring their physical health, a proper household as well as natural and community environments.

Ultimately, the Institute encourages health knowledge through grants for students and professionals; awards for leading applied-sciences researchers and institutions, and through the generation of innovative and reliable information for national decision makers. The Carlos Slim Institute works day after day with a single goal: help people live longer and better.

About the National Institute of Genomic Medicine
The National Institute of Genomic Medicine (INMEGEN), is the eleventh National Institute of Health in Mexico, founded in 2004. INMEGEN´s mission is to contribute to the health care of the Mexican population by developing cutting-edge scientific research and well-trained human resources in order to apply the knowledge of genomic medicine through innovation, state-of-the-art technology, and strategic partnerships, all the while complying with universal ethical principles.

INMEGEN´s main research areas focus on principal complex diseases in Mexico, including population genomics of the Mexican population, genomics of metabolic diseases (diabetes mellitus and obesity), cancer, infectious diseases, cardiovascular diseases, nutrigenomics, and pharmacogenomics.

One of the features of INMEGEN’s innovative culture is scientific research and development of technology, which leads to goods and services, that can then be used to contribute to better health care for the Mexican people in the knowledge-based economy.

Nicole Davis | Newswise Science News
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>