Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Will new methods that increase blood flow to bone implants improve viability of engineered bone tissue?

New, advanced techniques are needed that can mimic the normal blood supply that feeds natural bone to improve the viability and success of restorative procedures to replace damaged or diseased bone tissue using engineered constructs.

A comprehensive review article describing the most promising strategies for vascularization of bone tissue substitutes is published in Tissue Engineering, Part B: Reviews, a peer-reviewed journal from Mary Ann Liebert, Inc. The article is available free online on the Tissue Engineering website.

The lack of an adequate blood supply to engineered bone implants has been a major limiting factor in the ability of these large tissue engineered implants to survive and integrate in the body. Many new strategies for stimulating the growth of new blood vessels and the formation of a vascular network to carry nutrients and oxygen and aid in healing are in development, as presented by Lonnissa H. Nguyen, PhD, and coauthors from Massachusetts Institute of Technology (Cambridge); Brigham and Women's Hospital, Harvard University, and Harvard Medical School (MA); Ecole Polytechnique (Palaiseau, France); Chonnam National University (Gwangju, South Korea); Stanford University (CA); Tohoku University (Sendai, Japan). They describe the different methods and their limitations in the article "Vascularized Bone Tissue Engineering: Approaches for Potential Improvement."

"There is a critical need to develop innovative techniques for tissue vascularization, and the work by Nguyen et al. demonstrates both past successes in the field and future avenues for investigation," says Reviews Co-Editor-in-Chief John P. Fisher, PhD, Professor and Associate Chair, Fischell Department of Bioengineering, University of Maryland, College Park, MD.

About the Journal

Tissue Engineering is an authoritative peer-reviewed journal published monthly in print and online in three parts: Part A--the flagship journal; Part B—Reviews; and Part C—Methods. Led by Co-Editors-In-Chief Antonios Mikos, PhD, Louis Calder Professor at Rice University, Houston, TX, and Peter C. Johnson, MD, Vice President, Research and Development, Avery Dennison Medical Solutions of Chicago, IL and President and CEO, Scintellix, LLC, Raleigh, NC, the Journal brings together scientific and medical experts in the fields of biomedical engineering, material science, molecular and cellular biology, and genetic engineering. Tissue Engineering is the official journal of the Tissue Engineering & Regenerative Medicine International Society (TERMIS). Complete tables of content and a sample issue may be viewed online on the Tissue Engineering website.

About the Publisher

Mary Ann Liebert, Inc. is a privately held, fully integrated media company known for establishing authoritative peer-reviewed journals in many promising areas of science and biomedical research, including Stem Cells and Development, Human Gene Therapy and HGT Methods, and Advances in Wound Care. Its biotechnology trade magazine, Genetic Engineering & Biotechnology News (GEN), was the first in its field and is today the industry's most widely read publication worldwide. A complete list of the firm's 70 journals, books, and newsmagazines is available on the Mary Ann Liebert Inc. website.

Mary Ann Liebert, Inc. 140 Huguenot St., New Rochelle, NY 10801-5215

Phone: (914) 740-2100 (800) M-LIEBERT Fax: (914) 740-2101

Cathia Falvey | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>