Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Methodology to Predict Pandemics

15.02.2013
Current Research Uses Smart Surveillance to Rapidly Identify Emerging Disease Threats

EcoHealth Alliance, the nonprofit organization that focuses on local conservation and global health issues, announced new research focused on the rapid identification of disease outbreaks in the peer reviewed publication, Journal of the Royal Society Interface.

The article, authored by leading scientists in the fields of emerging disease ecology, biomathematics, computational biology and bioinformatics, shows how network theory can be used to identify outbreaks of unidentified diseases. The strategy builds on the wealth of online surveillance data and increased reporting and tracking of emerging infectious diseases via the Internet.

Pandemics often first emerge in remote regions, and early in their development, the identity of the cause is often unknown. In many cases these events turn out to be known diseases that don't require emergency action, and cutting through the clutter and uncertainty to determine which outbreaks are important is a critical challenge.

The newly released research used a simple set of data collected at the earliest stages of an outbreak such as symptoms, time of year, and percentage of the population that died (the case fatality rate). This information was collected from 125 reports of outbreaks on 10 known infectious diseases causing encephalitis (brain or neural infection) in South Asia - a known 'hotspot' for new disease outbreaks.
The data was analyzed to examine whether outbreaks of the same disease clustered together, based on basic outbreak properties (symptoms, timing and case fatality rate). Results showed that diseases such as Nipah virus - an emerging and very lethal disease - showed distinct characteristic patterns within such a network and clustered separately to other more established diseases such as malaria and Japanese encephalitis. The team was then able to take outbreaks caused by unknown pathogens and provide a probable diagnosis for these 'mystery diseases'. The initial analysis shows a promising advantage to aid in predicting and preventing possible pandemic diseases that can result in devastating losses in life and global economic crises. "This application of network theory is exciting not only because it provides a fast, affordable method for associating undiagnosed outbreaks with a set of most likely known diseases, but perhaps most importantly because it provides a method for researchers to work with public health experts to identify potentially novel pathogen threats, as these agents will not fall into any of the known disease clusters and therefore can be easily identified," said Dr. Tiffany Bogich, Princeton University.

Often, new pandemics start as a few cases of an unknown disease in a remote region of the globe. After a few weeks or months depending on conditions, the disease continues to spread through the rapid movement of global travelers. As with the SARS outbreak, the virus incubated for a few months in China before it spread to Hong Kong, Canada and other points around the world. In 2009, the outbreak of H1N1 'Swine' flu circulated in Mexico for at least a couple of months before it was discovered as a real threat to public health. When Nipah virus caused outbreaks in pigs and farm workers in Malaysia, many health officials thought the disease was symptomatic of Japanese encephalitis. All of these examples illustrate the need to identify highly infectious diseases at the very earliest stage - when there are just a few cases - allowing public health officials to thwart these new viruses from spreading globally.

"This research may be critical to rapidly deciding which outbreaks are something completely novel and have pandemic potential, rather than a repeat outbreak of a known pathogen. It allows public health agencies to target their resources in the most efficient way, and helps protect us from new emerging diseases, which often erupt in remote corners of the Earth where it is sometimes very difficult to obtain vital information, let alone biological samples to test for various pathogens," said Dr. Peter Daszak, corresponding author and President of EcoHealth Alliance. "Another aspect that we are looking at is using this tool to pinpoint possible bio-terrorism, such an act will produce immediate symptoms that are unusual, and would likely light up on our network analysis," added Dr. Daszak.

This study was funded by United States Agency for International Development (USAID) Emerging Pandemic Threats PREDICT, National Institutes of Health/National Science Foundation RAPID 'Ecology and Evolution of Infectious Diseases' from the John E. Fogarty International Center, DTRA, the Rockefeller Foundation, and the New York Community Trust.

About EcoHealth Alliance
Building on over 40 years of groundbreaking science, EcoHealth Alliance is a global, nonprofit organization dedicated to protecting wildlife and safeguarding human health from the emergence of disease. The organization develops ways to combat the effects of damaged ecosystems on human and wildlife health. Using environmental and health data covering the past 60 years, EcoHealth Alliance scientists created the first-ever, global disease hotspots map that identified at-risk regions, to help predict and prevent the next pandemic crisis. That work is the foundation of EcoHealth Alliance's rigorous, science-based approach, focused at the intersection of the environment, health, and capacity building. Working in the U.S. and more than 20 countries worldwide, EcoHealth Alliance's strength is founded on innovations in research, training, global partnerships, and policy initiatives. For more information, please visit www.ecohealthalliance.org.

Anthony M. Ramos | EurekAlert!
Further information:
http://www.ecohealthalliance.org

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>