Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Methodology to Predict Pandemics

15.02.2013
Current Research Uses Smart Surveillance to Rapidly Identify Emerging Disease Threats

EcoHealth Alliance, the nonprofit organization that focuses on local conservation and global health issues, announced new research focused on the rapid identification of disease outbreaks in the peer reviewed publication, Journal of the Royal Society Interface.

The article, authored by leading scientists in the fields of emerging disease ecology, biomathematics, computational biology and bioinformatics, shows how network theory can be used to identify outbreaks of unidentified diseases. The strategy builds on the wealth of online surveillance data and increased reporting and tracking of emerging infectious diseases via the Internet.

Pandemics often first emerge in remote regions, and early in their development, the identity of the cause is often unknown. In many cases these events turn out to be known diseases that don't require emergency action, and cutting through the clutter and uncertainty to determine which outbreaks are important is a critical challenge.

The newly released research used a simple set of data collected at the earliest stages of an outbreak such as symptoms, time of year, and percentage of the population that died (the case fatality rate). This information was collected from 125 reports of outbreaks on 10 known infectious diseases causing encephalitis (brain or neural infection) in South Asia - a known 'hotspot' for new disease outbreaks.
The data was analyzed to examine whether outbreaks of the same disease clustered together, based on basic outbreak properties (symptoms, timing and case fatality rate). Results showed that diseases such as Nipah virus - an emerging and very lethal disease - showed distinct characteristic patterns within such a network and clustered separately to other more established diseases such as malaria and Japanese encephalitis. The team was then able to take outbreaks caused by unknown pathogens and provide a probable diagnosis for these 'mystery diseases'. The initial analysis shows a promising advantage to aid in predicting and preventing possible pandemic diseases that can result in devastating losses in life and global economic crises. "This application of network theory is exciting not only because it provides a fast, affordable method for associating undiagnosed outbreaks with a set of most likely known diseases, but perhaps most importantly because it provides a method for researchers to work with public health experts to identify potentially novel pathogen threats, as these agents will not fall into any of the known disease clusters and therefore can be easily identified," said Dr. Tiffany Bogich, Princeton University.

Often, new pandemics start as a few cases of an unknown disease in a remote region of the globe. After a few weeks or months depending on conditions, the disease continues to spread through the rapid movement of global travelers. As with the SARS outbreak, the virus incubated for a few months in China before it spread to Hong Kong, Canada and other points around the world. In 2009, the outbreak of H1N1 'Swine' flu circulated in Mexico for at least a couple of months before it was discovered as a real threat to public health. When Nipah virus caused outbreaks in pigs and farm workers in Malaysia, many health officials thought the disease was symptomatic of Japanese encephalitis. All of these examples illustrate the need to identify highly infectious diseases at the very earliest stage - when there are just a few cases - allowing public health officials to thwart these new viruses from spreading globally.

"This research may be critical to rapidly deciding which outbreaks are something completely novel and have pandemic potential, rather than a repeat outbreak of a known pathogen. It allows public health agencies to target their resources in the most efficient way, and helps protect us from new emerging diseases, which often erupt in remote corners of the Earth where it is sometimes very difficult to obtain vital information, let alone biological samples to test for various pathogens," said Dr. Peter Daszak, corresponding author and President of EcoHealth Alliance. "Another aspect that we are looking at is using this tool to pinpoint possible bio-terrorism, such an act will produce immediate symptoms that are unusual, and would likely light up on our network analysis," added Dr. Daszak.

This study was funded by United States Agency for International Development (USAID) Emerging Pandemic Threats PREDICT, National Institutes of Health/National Science Foundation RAPID 'Ecology and Evolution of Infectious Diseases' from the John E. Fogarty International Center, DTRA, the Rockefeller Foundation, and the New York Community Trust.

About EcoHealth Alliance
Building on over 40 years of groundbreaking science, EcoHealth Alliance is a global, nonprofit organization dedicated to protecting wildlife and safeguarding human health from the emergence of disease. The organization develops ways to combat the effects of damaged ecosystems on human and wildlife health. Using environmental and health data covering the past 60 years, EcoHealth Alliance scientists created the first-ever, global disease hotspots map that identified at-risk regions, to help predict and prevent the next pandemic crisis. That work is the foundation of EcoHealth Alliance's rigorous, science-based approach, focused at the intersection of the environment, health, and capacity building. Working in the U.S. and more than 20 countries worldwide, EcoHealth Alliance's strength is founded on innovations in research, training, global partnerships, and policy initiatives. For more information, please visit www.ecohealthalliance.org.

Anthony M. Ramos | EurekAlert!
Further information:
http://www.ecohealthalliance.org

More articles from Health and Medicine:

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

nachricht Research offers clues for improved influenza vaccine design
09.04.2018 | NIH/National Institute of Allergy and Infectious Diseases

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

One step closer to reality

20.04.2018 | Life Sciences

The dark side of cichlid fish: from cannibal to caregiver

20.04.2018 | Life Sciences

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>