Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Methodology to Predict Pandemics

15.02.2013
Current Research Uses Smart Surveillance to Rapidly Identify Emerging Disease Threats

EcoHealth Alliance, the nonprofit organization that focuses on local conservation and global health issues, announced new research focused on the rapid identification of disease outbreaks in the peer reviewed publication, Journal of the Royal Society Interface.

The article, authored by leading scientists in the fields of emerging disease ecology, biomathematics, computational biology and bioinformatics, shows how network theory can be used to identify outbreaks of unidentified diseases. The strategy builds on the wealth of online surveillance data and increased reporting and tracking of emerging infectious diseases via the Internet.

Pandemics often first emerge in remote regions, and early in their development, the identity of the cause is often unknown. In many cases these events turn out to be known diseases that don't require emergency action, and cutting through the clutter and uncertainty to determine which outbreaks are important is a critical challenge.

The newly released research used a simple set of data collected at the earliest stages of an outbreak such as symptoms, time of year, and percentage of the population that died (the case fatality rate). This information was collected from 125 reports of outbreaks on 10 known infectious diseases causing encephalitis (brain or neural infection) in South Asia - a known 'hotspot' for new disease outbreaks.
The data was analyzed to examine whether outbreaks of the same disease clustered together, based on basic outbreak properties (symptoms, timing and case fatality rate). Results showed that diseases such as Nipah virus - an emerging and very lethal disease - showed distinct characteristic patterns within such a network and clustered separately to other more established diseases such as malaria and Japanese encephalitis. The team was then able to take outbreaks caused by unknown pathogens and provide a probable diagnosis for these 'mystery diseases'. The initial analysis shows a promising advantage to aid in predicting and preventing possible pandemic diseases that can result in devastating losses in life and global economic crises. "This application of network theory is exciting not only because it provides a fast, affordable method for associating undiagnosed outbreaks with a set of most likely known diseases, but perhaps most importantly because it provides a method for researchers to work with public health experts to identify potentially novel pathogen threats, as these agents will not fall into any of the known disease clusters and therefore can be easily identified," said Dr. Tiffany Bogich, Princeton University.

Often, new pandemics start as a few cases of an unknown disease in a remote region of the globe. After a few weeks or months depending on conditions, the disease continues to spread through the rapid movement of global travelers. As with the SARS outbreak, the virus incubated for a few months in China before it spread to Hong Kong, Canada and other points around the world. In 2009, the outbreak of H1N1 'Swine' flu circulated in Mexico for at least a couple of months before it was discovered as a real threat to public health. When Nipah virus caused outbreaks in pigs and farm workers in Malaysia, many health officials thought the disease was symptomatic of Japanese encephalitis. All of these examples illustrate the need to identify highly infectious diseases at the very earliest stage - when there are just a few cases - allowing public health officials to thwart these new viruses from spreading globally.

"This research may be critical to rapidly deciding which outbreaks are something completely novel and have pandemic potential, rather than a repeat outbreak of a known pathogen. It allows public health agencies to target their resources in the most efficient way, and helps protect us from new emerging diseases, which often erupt in remote corners of the Earth where it is sometimes very difficult to obtain vital information, let alone biological samples to test for various pathogens," said Dr. Peter Daszak, corresponding author and President of EcoHealth Alliance. "Another aspect that we are looking at is using this tool to pinpoint possible bio-terrorism, such an act will produce immediate symptoms that are unusual, and would likely light up on our network analysis," added Dr. Daszak.

This study was funded by United States Agency for International Development (USAID) Emerging Pandemic Threats PREDICT, National Institutes of Health/National Science Foundation RAPID 'Ecology and Evolution of Infectious Diseases' from the John E. Fogarty International Center, DTRA, the Rockefeller Foundation, and the New York Community Trust.

About EcoHealth Alliance
Building on over 40 years of groundbreaking science, EcoHealth Alliance is a global, nonprofit organization dedicated to protecting wildlife and safeguarding human health from the emergence of disease. The organization develops ways to combat the effects of damaged ecosystems on human and wildlife health. Using environmental and health data covering the past 60 years, EcoHealth Alliance scientists created the first-ever, global disease hotspots map that identified at-risk regions, to help predict and prevent the next pandemic crisis. That work is the foundation of EcoHealth Alliance's rigorous, science-based approach, focused at the intersection of the environment, health, and capacity building. Working in the U.S. and more than 20 countries worldwide, EcoHealth Alliance's strength is founded on innovations in research, training, global partnerships, and policy initiatives. For more information, please visit www.ecohealthalliance.org.

Anthony M. Ramos | EurekAlert!
Further information:
http://www.ecohealthalliance.org

More articles from Health and Medicine:

nachricht Usher syndrome: Gene therapy restores hearing and balance
25.09.2017 | Institut Pasteur

nachricht MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer
25.09.2017 | Case Western Reserve University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>