Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel method for treating ovarian cancer

10.08.2011
The Fraunhofer Institute for Cell Therapy and Immunology IZI supports the Australian company Prima BioMed Ltd. in tests and approvals regarding a novel therapeutic method for treating ovarian cancer.

Prima BioMed Ltd. is developing an autologous (the body's own) immune therapy for the treatment of epithelial ovarian carcinoma (ovarian cancer). Before the socalled CVac therapy can obtain approval and be used for treating patients, its safety and efficacy must be proved in a clinical study. According to Prima BioMed Ltd., first results of previous studies are highly promising.

Together with the Fraunhofer IZI the Australian company intends to conduct the clinical trial and to obtain approval for the novel therapy. In this context the Fraunhofer IZI is particularly responsible for the manufacture of investigational medicinal products and the conduct of quality controls for the European arm of the study. This joint project is funded with 4.1 million Euros by the Development Bank of Saxony (Sächsische Aufbaubank). On August 8, 2011, Saxonian State Minister Prof. Dr. Dr. Sabine von Schorlemer personally presented the funding grant, thus emphasizing the significance of such innovative projects for the Free State of Saxony.

In order to introduce the therapy to the European market as soon as possible, the Australian company has founded a German subsidiary based in Leipzig. Matthew Lehman, managing director of the Prima BioMed GmbH, is enthusiastic about the location of Leipzig. "The comprehensive support for Prima BioMed and our CVac program by the Free State of Saxony is overwhelming. With the Fraunhofer IZI, this region offers an advanced research infrastructure combined with excellent funding options through the Development Bank of Saxony, advantageous biologistics provided by the airport Leipzig-Halle and an outstanding research and development landscape. We are glad to be able to control our activities in Europe from Leipzig and are looking forward to a longterm commitment in this region".

Dr. Gerno Schmiedeknecht, Head of the Department of Cell Engineering at the Fraunhofer IZI, is glad about the cooperation. "We are proud to support Prima BioMed in the development of the CVacTM technology. It is our common goal to provide this promising therapy as soon as possible to as many patients as possible".

The autologous immune therapy CVacTM is based on the modification of the body's own immune cells. Tumor cells are capable of evading the immune defense in various ways. The CVacTM method modifies the patient's specialized immune cells so as to make them recognize the tumor cells and activate diverse defense mechanisms of the immune system. These so-called dendritic cells are targeted to recognize a specific protein (biomarker) that is present exclusively on the tumor cells. The immune system is thus capable of specifically attacking the tumor cells without affecting healthy cells. This form of treatment is therefore much gentler for the patient than irradiation and chemotherapies and also holds the promise of lower relapse rates.

| Fraunhofer-Institut
Further information:
http://www.izi.fraunhofer.de/
http://www.primabiomed.com.au/

Further reports about: BioMed CVac End User Development IZI cell death healthy cell immune cell immune system tumor cells

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>