Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel method for treating ovarian cancer

10.08.2011
The Fraunhofer Institute for Cell Therapy and Immunology IZI supports the Australian company Prima BioMed Ltd. in tests and approvals regarding a novel therapeutic method for treating ovarian cancer.

Prima BioMed Ltd. is developing an autologous (the body's own) immune therapy for the treatment of epithelial ovarian carcinoma (ovarian cancer). Before the socalled CVac therapy can obtain approval and be used for treating patients, its safety and efficacy must be proved in a clinical study. According to Prima BioMed Ltd., first results of previous studies are highly promising.

Together with the Fraunhofer IZI the Australian company intends to conduct the clinical trial and to obtain approval for the novel therapy. In this context the Fraunhofer IZI is particularly responsible for the manufacture of investigational medicinal products and the conduct of quality controls for the European arm of the study. This joint project is funded with 4.1 million Euros by the Development Bank of Saxony (Sächsische Aufbaubank). On August 8, 2011, Saxonian State Minister Prof. Dr. Dr. Sabine von Schorlemer personally presented the funding grant, thus emphasizing the significance of such innovative projects for the Free State of Saxony.

In order to introduce the therapy to the European market as soon as possible, the Australian company has founded a German subsidiary based in Leipzig. Matthew Lehman, managing director of the Prima BioMed GmbH, is enthusiastic about the location of Leipzig. "The comprehensive support for Prima BioMed and our CVac program by the Free State of Saxony is overwhelming. With the Fraunhofer IZI, this region offers an advanced research infrastructure combined with excellent funding options through the Development Bank of Saxony, advantageous biologistics provided by the airport Leipzig-Halle and an outstanding research and development landscape. We are glad to be able to control our activities in Europe from Leipzig and are looking forward to a longterm commitment in this region".

Dr. Gerno Schmiedeknecht, Head of the Department of Cell Engineering at the Fraunhofer IZI, is glad about the cooperation. "We are proud to support Prima BioMed in the development of the CVacTM technology. It is our common goal to provide this promising therapy as soon as possible to as many patients as possible".

The autologous immune therapy CVacTM is based on the modification of the body's own immune cells. Tumor cells are capable of evading the immune defense in various ways. The CVacTM method modifies the patient's specialized immune cells so as to make them recognize the tumor cells and activate diverse defense mechanisms of the immune system. These so-called dendritic cells are targeted to recognize a specific protein (biomarker) that is present exclusively on the tumor cells. The immune system is thus capable of specifically attacking the tumor cells without affecting healthy cells. This form of treatment is therefore much gentler for the patient than irradiation and chemotherapies and also holds the promise of lower relapse rates.

| Fraunhofer-Institut
Further information:
http://www.izi.fraunhofer.de/
http://www.primabiomed.com.au/

Further reports about: BioMed CVac End User Development IZI cell death healthy cell immune cell immune system tumor cells

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>