Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method restores grip function more quickly to patients with tetraplegia

10.04.2013
A new method in which a number of operations are performed simultaneously can provide people with tetraplegia with a better grip function and the ability to open their hand. This method also shortens the patient’s rehabilitation period by at least three months, reveals a doctoral thesis from the Sahlgrenska Academy, University of Gothenburg, Sweden.
If the neck is broken and there is a cervical spinal cord injury, muscles in the arm and hand are paralysed. But in many cases some muscle functions remain, which makes it possible to transfer muscles and tendons and thereby restore a tetraplegic person’s grip function.

About 50 or so such hand operations are performed every year at the Sahlgrenska University Hospital, and patients come from both Sweden and Europe. There have been major advances in surgical techniques in recent years. For example, the method of connecting tendons is now so strong and can withstand such a heavy strain that the patient can start to exercise his or her grasp just one day after the operation.

A dissertation at the Sahlgrenska Academy, University of Gothenburg, describes a new method in which several operations can be combined and performed simultaneously in order to create both a grasp and release function of the hand in people with tetraplegia following a cervical spinal cord injury.

Compared with previously, when at least two operations were required to achieve the same functions, according to the thesis the simultaneous interventions can shorten the treatment period at the ward by an average of ten days for each hand, saving the patient at least three months of rehabilitation.

“The operation not only gives the patient a reconstruction of the pinch and grip function, but also the ability to open the hand,” says Carina Reinholdt, Senior Consultant in hand surgery and Doctor of Medicine at the Sahlgrenska Academy, University of Gothenburg.

“The fact that the patient can start exercising immediately also reduces the risk of adhesion formations and scarring around the transferred tendons. The post-operative results are also better: the grip strength is twice as strong and the ability to open the hand is better than in traditional, separate operations.”

For the patient, a reconstructed grasp function means greater independence. With a functional grasp, a paralysed person can feed himself/herself, take care of his/her own hygiene, use a computer or mobile phone more easily, and hold and greet people.

“In our everyday lives we encounter countless instances where you need a good grip and the ability to open your hand. For many patients, this operation has meant that they’ve been able to return to work on a part-time basis,” says Carina Reinholdt.

Contact:
Carina Reinholdt, Doctor of Medicine at the Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg.
carina.reinholdt@vgregion.se
+46 (0)31-342 85 38
+46 (0)709-50 79 39

Annika Koldenius | idw
Further information:
http://www.gu.se

More articles from Health and Medicine:

nachricht Speed data for the brain’s navigation system
06.12.2016 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>