Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method restores grip function more quickly to patients with tetraplegia

10.04.2013
A new method in which a number of operations are performed simultaneously can provide people with tetraplegia with a better grip function and the ability to open their hand. This method also shortens the patient’s rehabilitation period by at least three months, reveals a doctoral thesis from the Sahlgrenska Academy, University of Gothenburg, Sweden.
If the neck is broken and there is a cervical spinal cord injury, muscles in the arm and hand are paralysed. But in many cases some muscle functions remain, which makes it possible to transfer muscles and tendons and thereby restore a tetraplegic person’s grip function.

About 50 or so such hand operations are performed every year at the Sahlgrenska University Hospital, and patients come from both Sweden and Europe. There have been major advances in surgical techniques in recent years. For example, the method of connecting tendons is now so strong and can withstand such a heavy strain that the patient can start to exercise his or her grasp just one day after the operation.

A dissertation at the Sahlgrenska Academy, University of Gothenburg, describes a new method in which several operations can be combined and performed simultaneously in order to create both a grasp and release function of the hand in people with tetraplegia following a cervical spinal cord injury.

Compared with previously, when at least two operations were required to achieve the same functions, according to the thesis the simultaneous interventions can shorten the treatment period at the ward by an average of ten days for each hand, saving the patient at least three months of rehabilitation.

“The operation not only gives the patient a reconstruction of the pinch and grip function, but also the ability to open the hand,” says Carina Reinholdt, Senior Consultant in hand surgery and Doctor of Medicine at the Sahlgrenska Academy, University of Gothenburg.

“The fact that the patient can start exercising immediately also reduces the risk of adhesion formations and scarring around the transferred tendons. The post-operative results are also better: the grip strength is twice as strong and the ability to open the hand is better than in traditional, separate operations.”

For the patient, a reconstructed grasp function means greater independence. With a functional grasp, a paralysed person can feed himself/herself, take care of his/her own hygiene, use a computer or mobile phone more easily, and hold and greet people.

“In our everyday lives we encounter countless instances where you need a good grip and the ability to open your hand. For many patients, this operation has meant that they’ve been able to return to work on a part-time basis,” says Carina Reinholdt.

Contact:
Carina Reinholdt, Doctor of Medicine at the Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg.
carina.reinholdt@vgregion.se
+46 (0)31-342 85 38
+46 (0)709-50 79 39

Annika Koldenius | idw
Further information:
http://www.gu.se

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>