Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New method for early detection of colon cancer

A new, highly sensitive method to detect genetic variations that initiate colon cancer could be readily used for noninvasive colon cancer screening, according to a study published in Cancer Prevention Research, a journal of the American Association for Cancer Research.

"Tumor cells are released into stool from the surface of precancers and early-stage colon cancers, but detecting a cancer-initiating genetic mutation among a large quantity of normal DNA from a patient's stool is like looking for a needle in a haystack," said Bettina Scholtka, Ph.D., assistant professor in the Department of Nutritional Toxicology at the University of Potsdam in Nuthetal, Germany.

"By combining for the first time locked nucleic acid-based, wild-type blocking polymerase chain reaction and high-resolution melting, we were able to achieve the desired sensitivity. The extremely high sensitivity of this technique allows us to find very low amounts of different types of the cancer-initiating mutations in patients' stool samples.

"Colon precancer cells carrying these genetic variations are routinely shed in stool samples, but these cells can be detected in blood only after the cancer has advanced, so stool is better than blood if we are to catch these cancers at a very early stage," she added.

About 60 percent and 40 percent of patients with colorectal cancer have genetic variations in the genes APC and KRAS, respectively. Because these variations are also present in precancers, methods for spotting them can help detect colon cancers early. The new method described in this study can detect a single cancer-specific gene variation among 10,000 times the amount of normal DNA, and is up to 5,000-fold more sensitive than other noninvasive screening methods.

A multicenter study is needed to validate the sensitivity and specificity of this new method in comparison with standard screening methods like colonoscopy, according to Scholtka.

Scholtka and colleagues used 80 human colon tissue samples representing cancers and precancers to detect genetic variations using a combination of two techniques: The first technique — locked nucleic acid (LNA)-based, wild-type blocking (WTB) polymerase chain reaction — suppressed normal DNA present in large quantities in the sample; and the second technique — high-resolution melting (HRM) — enhanced the detection of genetic variations.

The researchers were able to detect APC variations in 41 of the 80 samples. They were also able to detect previously unknown variations in APC. In contrast, the routinely used technique called direct sequencing could detect variations only in 28 samples.

They then analyzed 22 stool samples from patients whose colon tissues had APC variations, and nine stool samples from patients whose colon tissues did not have APC variations, as controls. They were able to detect APC variations in 21 out of 22 samples.

The researchers also detected variations in the KRAS gene using 20 human colon tissue samples to demonstrate that the WTB-HRM method can be used to detect variations in genes other than APC.

"By using our technique for examining a selection of genes that become mutated during the process of colon cancer formation, it is possible to detect the very first stage of colon cancer and even precancers in a stool sample," said Scholtka. "It will be possible to prevent cancer in many cases by removing the precancerous lesions after early detection."

Follow the AACR on Twitter: @AACR

Follow the AACR on Facebook:

About the American Association for Cancer Research

Founded in 1907, the American Association for Cancer Research (AACR) is the world's oldest and largest professional organization dedicated to advancing cancer research and its mission to prevent and cure cancer. AACR membership includes more than 34,000 laboratory, translational, and clinical researchers; population scientists; other health care professionals; and cancer advocates residing in more than 90 countries. The AACR marshals the full spectrum of expertise of the cancer community to accelerate progress in the prevention, biology, diagnosis, and treatment of cancer by annually convening more than 20 conferences and educational workshops, the largest of which is the AACR Annual Meeting with more than 18,000 attendees. In addition, the AACR publishes eight peer-reviewed scientific journals and a magazine for cancer survivors, patients, and their caregivers. The AACR funds meritorious research directly as well as in cooperation with numerous cancer organizations. As the scientific partner of Stand Up To Cancer, the AACR provides expert peer review, grants administration, and scientific oversight of team science and individual grants in cancer research that have the potential for near-term patient benefit. The AACR actively communicates with legislators and policymakers about the value of cancer research and related biomedical science in saving lives from cancer. For more information about the AACR, visit

To interview Bettina Scholtka, contact the press office of the University of Potsdam at 49-0-331-977-0 or For other inquiries, contact Jeremy Moore at or 215-446-7109.

Jeremy Moore | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>