Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method may help detect marker for Alzheimer's disease earlier

16.04.2012
Use of a new drug to detect the beta-amyloid plaques in the brain that are hallmark signs of Alzheimer's disease may help doctors diagnose the disease earlier, according to research that will be presented as part of the Emerging Science program (formerly known as Late-Breaking Science) at the American Academy of Neurology's 64th Annual Meeting in New Orleans April 21 to April 28, 2012.

Currently, Alzheimer's disease can only be definitively confirmed through the detection of amyloid plaques and/or tangles in the brain during autopsy after death or with a brain tissue biopsy. The new method uses the drug florbetaben as a tracer during a PET scan of the brain to visualize amyloid plaques during life.

In order to prove that the florbetaben PET scan detects beta-amyloid in the brain, the global phase III study directly compared brain regions in the PET scan to respective brain regions after death during autopsy.

For the study, more than 200 participants nearing death (including both participants with suspected Alzheimer's disease and those without known dementia) and who were willing to donate their brain underwent MRI and florbetaben PET scan. The amount of plaque found in the 31 participants who reached autopsy was then compared to the results of the scans. A total of 186 brain regions from these donors were analyzed along with 60 brain regions from healthy volunteers. Based on these 246 brain regions the study found florbetaben to detect beta-amyloid with a sensitivity of 77 percent and a specificity of 94 percent.

Comparison of the visual assessment method proposed for florbetaben for clinical practice with the post mortem diagnosis revealed a sensitivity of 100 percent and a specificity of 92 percent. Sensitivity is the percentage of actual positives that are correctly identified as positive, and specificity is the percentage of negatives that are correctly identified.

"These results confirm that florbetaben is able to detect beta-amyloid plaques in the brain during life with great accuracy and is a suitable biomarker," said study author Marwan Sabbagh, MD, director of Banner Sun Health Research Institute in Sun City, Ariz., and a Fellow of the American Academy of Neurology. "This is an easy, non-invasive way to assist an Alzheimer's diagnosis at an early stage. Also exciting is the possibility of using florbetaben as tool in future therapeutic clinical research studies where therapy goals focus on reducing levels of beta-amyloid in the brain."

The study was supported by Bayer Healthcare Berlin.

Learn more about Alzheimer's disease at http://www.aan.com/patients.

The American Academy of Neurology, an association of more than 25,000 neurologists and neuroscience professionals, is dedicated to promoting the highest quality patient-centered neurologic care. A neurologist is a doctor with specialized training in diagnosing, treating and managing disorders of the brain and nervous system such as stroke, Alzheimer's disease, epilepsy, Parkinson's disease and multiple sclerosis. For more information about the American Academy of Neurology, visit http://www.aan.com or find us on Facebook, Twitter, Google+ and YouTube.

Media Contacts:
Rachel Seroka, rseroka@aan.com, (651) 695-2738
Angela Babb, APR, ababb@aan.com, (651) 695-2789
AAN Press Room (April 22-27): (504) 670-4511

Rachel Seroka | EurekAlert!
Further information:
http://www.aan.com

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017 | Materials Sciences

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>