Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method may help detect marker for Alzheimer's disease earlier

16.04.2012
Use of a new drug to detect the beta-amyloid plaques in the brain that are hallmark signs of Alzheimer's disease may help doctors diagnose the disease earlier, according to research that will be presented as part of the Emerging Science program (formerly known as Late-Breaking Science) at the American Academy of Neurology's 64th Annual Meeting in New Orleans April 21 to April 28, 2012.

Currently, Alzheimer's disease can only be definitively confirmed through the detection of amyloid plaques and/or tangles in the brain during autopsy after death or with a brain tissue biopsy. The new method uses the drug florbetaben as a tracer during a PET scan of the brain to visualize amyloid plaques during life.

In order to prove that the florbetaben PET scan detects beta-amyloid in the brain, the global phase III study directly compared brain regions in the PET scan to respective brain regions after death during autopsy.

For the study, more than 200 participants nearing death (including both participants with suspected Alzheimer's disease and those without known dementia) and who were willing to donate their brain underwent MRI and florbetaben PET scan. The amount of plaque found in the 31 participants who reached autopsy was then compared to the results of the scans. A total of 186 brain regions from these donors were analyzed along with 60 brain regions from healthy volunteers. Based on these 246 brain regions the study found florbetaben to detect beta-amyloid with a sensitivity of 77 percent and a specificity of 94 percent.

Comparison of the visual assessment method proposed for florbetaben for clinical practice with the post mortem diagnosis revealed a sensitivity of 100 percent and a specificity of 92 percent. Sensitivity is the percentage of actual positives that are correctly identified as positive, and specificity is the percentage of negatives that are correctly identified.

"These results confirm that florbetaben is able to detect beta-amyloid plaques in the brain during life with great accuracy and is a suitable biomarker," said study author Marwan Sabbagh, MD, director of Banner Sun Health Research Institute in Sun City, Ariz., and a Fellow of the American Academy of Neurology. "This is an easy, non-invasive way to assist an Alzheimer's diagnosis at an early stage. Also exciting is the possibility of using florbetaben as tool in future therapeutic clinical research studies where therapy goals focus on reducing levels of beta-amyloid in the brain."

The study was supported by Bayer Healthcare Berlin.

Learn more about Alzheimer's disease at http://www.aan.com/patients.

The American Academy of Neurology, an association of more than 25,000 neurologists and neuroscience professionals, is dedicated to promoting the highest quality patient-centered neurologic care. A neurologist is a doctor with specialized training in diagnosing, treating and managing disorders of the brain and nervous system such as stroke, Alzheimer's disease, epilepsy, Parkinson's disease and multiple sclerosis. For more information about the American Academy of Neurology, visit http://www.aan.com or find us on Facebook, Twitter, Google+ and YouTube.

Media Contacts:
Rachel Seroka, rseroka@aan.com, (651) 695-2738
Angela Babb, APR, ababb@aan.com, (651) 695-2789
AAN Press Room (April 22-27): (504) 670-4511

Rachel Seroka | EurekAlert!
Further information:
http://www.aan.com

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>