Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Method Attacks Bacterial Infections on Contact Lenses

26.01.2011
Researchers at National Jewish Health and the University of Texas Southwestern Medical Center have discovered a new method to fight bacterial infections associated with contact lenses.

The method may also have applications for bacterial infections associated with severe burns and cystic fibrosis. The results were published online January 18 in the journal Investigative Ophthalmology and Visual Science.

“Infections by the bacteria Pseudomonas aeruginosa can cause severe scarring and vision loss when they spread to the cornea,” said senior author Jerry Nick, MD, Associate Professor of Medicine at National Jewish Health. “By breaking apart a molecular scaffolding that encases the organisms and makes them more difficult to eradicate, we were able to significantly reduce bacterial infection of the cornea.”

The eye normally fights infections through a variety of defense mechanisms including blinking of the eyes, which helps remove bacterial organisms from the surface of the eye. Contact lenses, however, inhibit the effectiveness of blinking eyelids.

Thus, bacteria can adhere to the surface of the contact lens that sits against the eye. If those bacteria infect the corneal surface they can destroy the delicate corneal cells, which can lead to scarring and vision loss. The condition is known as microbial keratitis, and affects about two to four lens wearers per 10,000 each year.

Eye infections can be treated with antibiotics. However, it can be difficult to eliminate the bacteria on the contact lenses, especially when they form a biofilm. A biofilm is a matrix that harbors and encases communities of the organisms, making them harder to eradicate.

The researchers confirmed earlier findings that cellular debris from immune cells fighting the infection actually provide the raw materials for the biofilm – DNA, actin and histones. So, they used the enzyme DNAase together with negatively charged poly aspartic acid to break down the chemical bonds of these elements that support the biofilm.

This treatment reduced biofilms on the contact lenses by 79.2 percent. The same treatment reduced infection of the cornea in an animal model by 41 percent. There was no evidence of any harm caused by the treatments. (Abstract)

“These are vey promising early results that point to potentially new methods for removing bacterial biofilms from contact lens surfaces, thereby reducing the risk of microbial keratitis, as well as the for the treatment of infections by Pseudomonas that are associated with cystic fibrosis and severe burns,’ said Danielle Robertson, OD, PhD, first author and Assistant Professor of Ophthalmology at UT Southwestern, and first author on the study.

William Allstetter | EurekAlert!
Further information:
http://www.njhealth.org

More articles from Health and Medicine:

nachricht TSRI researchers develop new method to 'fingerprint' HIV
29.03.2017 | Scripps Research Institute

nachricht Periodic ventilation keeps more pollen out than tilted-open windows
29.03.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>