Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Metastatic pancreatic, primary breast cancer have common growth mechanisms, study suggests

12.07.2013
A recently discovered form of the protein that triggers blood clotting plays a critical role in promoting the growth of metastatic pancreatic cancer and primary breast cancer, according to the cumulative findings from two new scientific manuscripts published online ahead of print in the International Journal of Cancer and PNAS (Proceedings of the National Academy of Sciences).

The protein, called "Tissue Factor," is present in various tissues—for example, walls of blood vessels. Earlier studies suggested that alternatively spliced Tissue Factor (asTF) may contribute to cancer growth, but the molecular events leading to this were previously unknown.

New research conducted through an international collaboration between the labs of Vladimir Bogdanov, PhD, of the University of Cincinnati Cancer Institute, and Henri Versteeg, PhD, of the Einthoven Laboratory for Experimental Vascular Medicine at the Leiden University Medical Center in Leiden, the Netherlands, articulates how asTF fuels growth and metastasis of solid cancers.

Using preclinical animal models, Bogdanov and Versteeg's teams obtained the first scientifically validated evidence that asTF promotes the spread of pancreatic cancer and promotes primary growth of breast cancer tumors.

"We have demonstrated that targeting asTF with a novel monoclonal antibody—developed based on our 10 years of studying asTF—also stops the growth of breast cancer in an animal model, giving us a promising new target to fight certain forms of breast cancer," says Bogdanov, who originally described asTF in 2003. UC filed a patent for this technology in January 2013.

Bogdanov and Versteeg presented their findings at the XXIV Congress of the International Society on Thrombosis and Haemostasis in Amsterdam, the Netherlands (held June 29-July 4, 2013).

"Many molecules on the surface of cells—including integrins—are important for the function of both normal and cancerous cells, so targeting integrins for stopping the growth of cancer is not a promising strategy. What is unique about asTF is that it binds to integrins on vessel-forming cells, activating them. We've shown that certain cancer cells share those same qualities, so if you target asTF—which is elevated in cancer—there is significant potential to spare the 'good' parts of the cellular system while removing the 'bad' cancer-specific protein from the game," explains Bogdanov.

"Many routine therapies such as chemotherapy or radiation may not always be efficient. Targeting asTF in tumors using our monoclonal antibody may form a potent additional anticancer strategy in combination with conventional avenues", says Versteeg.

This work was funded by National Institutes of Health/National Cancer Institute grant 1R21CA160293-01A1 and the Netherlands Organization for Scientific Research VIDI grant 91710329. Authors on both manuscripts have no conflicts of interest to report.

Collaborators in the International Journal of Cancer study include UC's Dusten Unruh, Kevin Turner, DO, Ramprasad Srinivasan, PhD, Xiaoyang Qi, PhD, Zhengtao Chu, , David Plas, PhD, Catherine Gallo, Syed Ahmad, MD, and Fred Lucas, MD; Begum Kocaturk, PhD, of Einthoven Laboratory for Experimental Vascular Medicine; Bruce Aronow, PhD, of Cincinnati Children's Hospital Medical Center; Holger Kalthoff, PhD, of the Institute of Experimental Cancer Research (Germany); Daniel Krichhofer, PhD of Genentech (California); and Wolfram Ruf, MD, of the Scripps Research Institute (California).

Collaborators in the PNAS study include Begum Kocaturk, PhD, and Yascha Van den Berg, MD, PhD, Martijn van der Ent, PhD, Pieter Reitsma, PhD and Susanne Osanto, PhD, of Einthoven Laboratory for Experimental Vascular Medicine; Chris Tieken, PhD, J. Sven D. Mieog, PhD, Charla Engels, PhD, Peter Kuppen, PhD, Cornelis Van de Velde, PhD, and Gerrit-Jan Liefers, PhD, of Leiden University Medical Center; and Dr Ruf of the Scripps Research Institute.

Amanda Harper | EurekAlert!
Further information:
http://www.uc.edu

More articles from Health and Medicine:

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>