Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MERS virus discovered in bat near site of outbreak in Saudi Arabia

22.08.2013
First study of MERS animal host in Saudi Arabia; led by Columbia University, EcoHealth Alliance, and the Ministry of Health of the Kingdom of Saudi Arabia

A 100% genetic match for Middle East Respiratory Syndrome (MERS) has been discovered in an insect-eating bat in close proximity to the first known case of the disease in Saudi Arabia. The discovery points to the likely animal origin for the disease, although researchers say that an intermediary animal is likely also involved.


This is an Egyptian Tomb Bat (Taphozous perforatus) being examined by researchers. One of this type of bat was found to have Middle East Respiratory Syndrome in a study in Saudi Arabia.

Credit: Jonathan H. Epstein/EcoHealth Alliance

Led by team of investigators from the Center for Infection and Immunity (CII) at Columbia University's Mailman School of Public Health, EcoHealth Alliance, and the Ministry of Health of the Kingdom of Saudi Arabia, the study is the first to search for an animal reservoir for MERS in Saudi Arabia, and the first to identify such a reservoir by finding a genetic match in an animal. Results appear online in Emerging Infectious Diseases, a journal of the U.S. Centers for Disease Control and Prevention.

"There have been several reports of finding MERS-like viruses in animals. None were a genetic match. In this case we have a virus in an animal that is identical in sequence to the virus found in the first human case. Importantly, it's coming from the vicinity of that first case," says W. Ian Lipkin, MD, director of the Center for Infection and Immunity and a co-author of the study.

MERS was first described in September 2012 and continues to spread. Close to 100 cases have been reported worldwide, 70 of them from Saudi Arabia. The causative agent, a new type of coronavirus, has been determined; however, the origin of the virus has been unknown until now.

Over a six-week period during field expeditions in October 2012 and April 2013, the researchers collected more than 1,000 samples from seven bat species in regions where cases of MERS were identified in Bisha, Unaizah, and Riyadh. Extensive analysis was performed using polymerase chain reaction and DNA sequencing revealed the presence of a wide range of alpha and beta coronaviruses in up to a third of bat samples. One fecal sample from an Egyptian Tomb Bat (Taphozous perforatus) collected within a few kilometers of the first known MERS victim's home contained sequences of a virus identical to those recovered from the victim.

Bats are the reservoirs of viruses that can cause human disease including rabies, Hendra, Nipah, Marburg, and SARS. In some instances the infection may spread directly from bats to humans through inadvertent inhalation of infected aerosols, ingestion of contaminated food, or, less commonly, a bite wound. In other instances bats can first infect intermediate hosts. The researchers suggest that the indirect method for transmission is more likely in MERS.

"There is no evidence of direct exposure to bats in the majority of human cases of MERS," says Ziad Memish, MD, Deputy Minister of Health, Kingdom of Saudi Arabia, and lead author of the study. "Given that human-to-human transmission is inefficient, we speculate that an as-yet-to-be determined intermediate host plays a critical role in human disease."

"We are continuing to look for evidence of the virus in wildlife and domestic animals, and investigating the mechanisms by which the virus causes human disease," adds Dr. Lipkin. "This is but the first chapter in a powerful collaboration amongst partners committed to global public health."

In the coming days, the group will be reporting the results of its investigation into the possible presence of MERS in camels, sheep, goats, and cattle.

The current study, titled "Coronavirus diversity and evidence for MERS-CoV infection in bats in Saudi Arabia" appears online in the journal Emerging Infectious Diseases: http://wwwnc.cdc.gov/eid/article/19/11/13-1172_article.htm

Timothy S. Paul | EurekAlert!
Further information:
http://www.columbia.edu

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>