Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Memory improves if neurons are new

08.10.2008
The birth of new neurons (neurogenesis) does not end completely during development but continues throughout all life in two areas of the adult nervous system, i.e. subventricular zone and hippocampus.

Recent research has shown that hippocampal neurogenesis is crucial for memory formation. These studies, however, have not yet clarified how the newborn neurons are integrated in the existing circuits and thus contribute to new memories formation and to the maintenance of old ones.

The team of researchers of CNR-LUMSA-EBRI at the European Centre for Brain Research, organization established in Rome with the key contribution of the Santa Lucia Foundation, has taken a step forward to understand the requirements of newborn neurons in the process of learning and memory. The neuroscientists coordinated by dr. Felice Tirone of the Institute of Neurobiology and Molecular Medicine (INMM) of CNR, in collaboration with prof. Vincenzo Cestari of the Institute for Neuroscience of CNR and the LUMSA University and with dr. Alberto Bacci of the European Brain Research Institute, have shown that a key factor for neurogenesis is represented by the speed of differentiation of progenitors (stem cells that give rise to neurons) in hippocampus. From such speed will in fact depend the success of the whole process. “New neurons must maturate according to a correct temporal sequence in order to become able to acquire new memories and retrieve the existing ones”, explains Tirone.

This study is based on a new experimental approach, that involves the generation of a mice line in which the differentiation of newborn neurons is accelerated without altering their number. This is obtained by the selective expression in neural progenitors of the hippocampus of PC3/Tis21, a gene specifically able to accelerate the differentiation of these and other types of neural progenitors.

“Compelling new neurons to rush ahead in their differentiation for a predefined time period, we have observed that a small number of neurons of 2-3 weeks of age is critical for learning,” continues the INMM-CNR researcher. “In fact, mice so treated are not only unable to learn new spatial information, but they are also unable to use previously acquired memories.”

“PC3/Tis21, of which we have previously observed an action against brain tumors in consequence of its ability to promote differentiation of neural progenitor cells, might indeed have other practical outcomes” continues Tirone “since it is activated by Nerve Growth Factor, a molecule whose deprivation appears to be an important component of Alzheimer’s disease. In fact hippocampus is one of the first brain regions damaged by Alzheimer’s disease, which is characterized mainly by temporal and spatial disorientation and by a memory deficit. We might gain some useful information also to understand the mechanisms underlying this disease.”

Thus, it is an open and relevant question in neuroscience the understanding of mechanisms and factors that control or influence adult neurogenesis, in the field of memory as these researches now indicate, but also of depression, which, as some researchers have suggested, might take place in consequence of a defective adult neurogenesis.

The original article has been published by PLoS Biology on October 7 2008

Marco Ferrazzoli | alfa
Further information:
http://www.cnr.it
http://biology.plosjournals.org/perlserv/?request=get-document&doi=10.1371%2Fjournal.pbio.0060246

Further reports about: Alzheimer Brain CNR Neuroscience brain tumor neurogenesis

More articles from Health and Medicine:

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

nachricht High speed video recording precisely measures blood cell velocity
15.11.2017 | ITMO University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>