Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Memory improves if neurons are new

08.10.2008
The birth of new neurons (neurogenesis) does not end completely during development but continues throughout all life in two areas of the adult nervous system, i.e. subventricular zone and hippocampus.

Recent research has shown that hippocampal neurogenesis is crucial for memory formation. These studies, however, have not yet clarified how the newborn neurons are integrated in the existing circuits and thus contribute to new memories formation and to the maintenance of old ones.

The team of researchers of CNR-LUMSA-EBRI at the European Centre for Brain Research, organization established in Rome with the key contribution of the Santa Lucia Foundation, has taken a step forward to understand the requirements of newborn neurons in the process of learning and memory. The neuroscientists coordinated by dr. Felice Tirone of the Institute of Neurobiology and Molecular Medicine (INMM) of CNR, in collaboration with prof. Vincenzo Cestari of the Institute for Neuroscience of CNR and the LUMSA University and with dr. Alberto Bacci of the European Brain Research Institute, have shown that a key factor for neurogenesis is represented by the speed of differentiation of progenitors (stem cells that give rise to neurons) in hippocampus. From such speed will in fact depend the success of the whole process. “New neurons must maturate according to a correct temporal sequence in order to become able to acquire new memories and retrieve the existing ones”, explains Tirone.

This study is based on a new experimental approach, that involves the generation of a mice line in which the differentiation of newborn neurons is accelerated without altering their number. This is obtained by the selective expression in neural progenitors of the hippocampus of PC3/Tis21, a gene specifically able to accelerate the differentiation of these and other types of neural progenitors.

“Compelling new neurons to rush ahead in their differentiation for a predefined time period, we have observed that a small number of neurons of 2-3 weeks of age is critical for learning,” continues the INMM-CNR researcher. “In fact, mice so treated are not only unable to learn new spatial information, but they are also unable to use previously acquired memories.”

“PC3/Tis21, of which we have previously observed an action against brain tumors in consequence of its ability to promote differentiation of neural progenitor cells, might indeed have other practical outcomes” continues Tirone “since it is activated by Nerve Growth Factor, a molecule whose deprivation appears to be an important component of Alzheimer’s disease. In fact hippocampus is one of the first brain regions damaged by Alzheimer’s disease, which is characterized mainly by temporal and spatial disorientation and by a memory deficit. We might gain some useful information also to understand the mechanisms underlying this disease.”

Thus, it is an open and relevant question in neuroscience the understanding of mechanisms and factors that control or influence adult neurogenesis, in the field of memory as these researches now indicate, but also of depression, which, as some researchers have suggested, might take place in consequence of a defective adult neurogenesis.

The original article has been published by PLoS Biology on October 7 2008

Marco Ferrazzoli | alfa
Further information:
http://www.cnr.it
http://biology.plosjournals.org/perlserv/?request=get-document&doi=10.1371%2Fjournal.pbio.0060246

Further reports about: Alzheimer Brain CNR Neuroscience brain tumor neurogenesis

More articles from Health and Medicine:

nachricht 'Exciting' discovery on path to develop new type of vaccine to treat global viruses
18.09.2017 | University of Southampton

nachricht A new approach to high insulin levels
18.09.2017 | Schweizerischer Nationalfonds SNF

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>