Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Memory improves if neurons are new

08.10.2008
The birth of new neurons (neurogenesis) does not end completely during development but continues throughout all life in two areas of the adult nervous system, i.e. subventricular zone and hippocampus.

Recent research has shown that hippocampal neurogenesis is crucial for memory formation. These studies, however, have not yet clarified how the newborn neurons are integrated in the existing circuits and thus contribute to new memories formation and to the maintenance of old ones.

The team of researchers of CNR-LUMSA-EBRI at the European Centre for Brain Research, organization established in Rome with the key contribution of the Santa Lucia Foundation, has taken a step forward to understand the requirements of newborn neurons in the process of learning and memory. The neuroscientists coordinated by dr. Felice Tirone of the Institute of Neurobiology and Molecular Medicine (INMM) of CNR, in collaboration with prof. Vincenzo Cestari of the Institute for Neuroscience of CNR and the LUMSA University and with dr. Alberto Bacci of the European Brain Research Institute, have shown that a key factor for neurogenesis is represented by the speed of differentiation of progenitors (stem cells that give rise to neurons) in hippocampus. From such speed will in fact depend the success of the whole process. “New neurons must maturate according to a correct temporal sequence in order to become able to acquire new memories and retrieve the existing ones”, explains Tirone.

This study is based on a new experimental approach, that involves the generation of a mice line in which the differentiation of newborn neurons is accelerated without altering their number. This is obtained by the selective expression in neural progenitors of the hippocampus of PC3/Tis21, a gene specifically able to accelerate the differentiation of these and other types of neural progenitors.

“Compelling new neurons to rush ahead in their differentiation for a predefined time period, we have observed that a small number of neurons of 2-3 weeks of age is critical for learning,” continues the INMM-CNR researcher. “In fact, mice so treated are not only unable to learn new spatial information, but they are also unable to use previously acquired memories.”

“PC3/Tis21, of which we have previously observed an action against brain tumors in consequence of its ability to promote differentiation of neural progenitor cells, might indeed have other practical outcomes” continues Tirone “since it is activated by Nerve Growth Factor, a molecule whose deprivation appears to be an important component of Alzheimer’s disease. In fact hippocampus is one of the first brain regions damaged by Alzheimer’s disease, which is characterized mainly by temporal and spatial disorientation and by a memory deficit. We might gain some useful information also to understand the mechanisms underlying this disease.”

Thus, it is an open and relevant question in neuroscience the understanding of mechanisms and factors that control or influence adult neurogenesis, in the field of memory as these researches now indicate, but also of depression, which, as some researchers have suggested, might take place in consequence of a defective adult neurogenesis.

The original article has been published by PLoS Biology on October 7 2008

Marco Ferrazzoli | alfa
Further information:
http://www.cnr.it
http://biology.plosjournals.org/perlserv/?request=get-document&doi=10.1371%2Fjournal.pbio.0060246

Further reports about: Alzheimer Brain CNR Neuroscience brain tumor neurogenesis

More articles from Health and Medicine:

nachricht Penn studies find promise for innovations in liquid biopsies
30.03.2017 | University of Pennsylvania School of Medicine

nachricht 'On-off switch' brings researchers a step closer to potential HIV vaccine
30.03.2017 | University of Nebraska-Lincoln

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>