Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Medicine reaches the target with the help of magnets

If a drug can be guided to the right place in the body, the treatment is more effective and there are fewer side-effects. Researchers at Lund University in Sweden have now developed magnetic nanoparticles that can be directed to metallic implants such as artificial knee joints, hip joints and stents in the coronary arteries.

Associate Professor Maria Kempe, her brother and colleague Dr Henrik Kempe and members of staff at Skåne University Hospital have shown that the principle works in animal experiments. They have succeeded in attaching a clot-dissolving drug to the nanoparticles and, with the help of magnets, have directed the particles to a blood clot in a stent in the heart to dissolve it. Thus the nanoparticles have been able to stop an incipient heart attack.

A stent is a tube-shaped metal net used to treat narrowing of the coronary arteries. First the artery is expanded using a balloon catheter, then a stent is inserted to keep the artery open. However, the method is not without problems: depending on the type of stent inserted, the cells of the artery wall can grow and again obstruct the artery or a blood clot can develop in the stent.

In the Lund researchers’ experiments, the nanoparticles were coated with a drug used to treat blood clots. The particles could also carry other drugs, e.g. drugs to stop the cell growth that makes an artery become narrower.

“They could also carry antibiotics to treat an infection developed after insertion of an implant. We have developed polymer materials that can be loaded with antibiotics – these could produce interesting results in this context”, says Maria Kempe.

Guiding drug-loaded magnetic particles using a magnet outside the body is not a new idea. However, previous attempts have failed for various reasons: it has only been possible to reach the body’s superficial tissue and the particles have often obstructed the smallest blood vessels.

The Lund researchers’ attempt has succeeded partly because nanotechnology has made the particles tiny enough to pass through the smallest arteries and partly because the target has been a metallic stent. When the stent is placed in a magnetic field, the magnetic force becomes sufficiently strong to attract the magnetic nanoparticles. For the method to work the patient therefore has to have an implant containing a magnetic metal.

”It takes many years to develop a treatment method that can be used on patients. But the good initial results make us hopeful”, says Maria Kempe.

An article about the results, entitled ‘The use of magnetite nanoparticles for implant-assisted magnetic drug targeting in thrombolytic therapy’, has recently been published in the journal Biomaterials. The article can be found on, enter Maria Kempe in the Author search field.

Maria Kempe can be contacted by telephone, +46 (0)46 222 98 57 or +46 (0)70 222 08 57, or by email,

Ingela Björck, Press Officer, Lund University can be contacted by telephone, +46 (0)46 222 76 46 or email:

Ingela Björck | idw
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>